Search
- Filter Results
- Location
- Classification
- Include attachments
- https://query.libretexts.org/%E7%AE%80%E4%BD%93%E4%B8%AD%E6%96%87/%E5%9B%BE%E4%B9%A6%EF%BC%9A%E5%9F%BA%E6%9C%AC%E4%BB%A3%E6%95%B0_(OpenStax)/06%3A_%E5%A4%9A%E9%A1%B9%E5%BC%8F/6.07%3A_%E6%95%B4%E6%95%B0%E6%8C%87%E6%95%B0%E5%92%8C%E7%A7%91%E5%AD%A6%E8%AE%B0%E6%95%B0%E6%B3%95\(\begin{array}{lrll}{\textbf { Product Property }}& a^{m} \cdot a^{n} &=&a^{m+n} \\ {\textbf { Power Property }} &\left(a^{m}\right)^{n} &=&a^{m \cdot n} \\ {\textbf { Product to a Power }} &(a b)^{m...\(\begin{array}{lrll}{\textbf { Product Property }}& a^{m} \cdot a^{n} &=&a^{m+n} \\ {\textbf { Power Property }} &\left(a^{m}\right)^{n} &=&a^{m \cdot n} \\ {\textbf { Product to a Power }} &(a b)^{m} &=&a^{m} b^{m} \\ {\textbf { Quotient Property }} & \dfrac{a^{m}}{a^{n}} &=&a^{m-n}, a \neq 0 \\ {\textbf { Zero Exponent Property }}& a^{0} &= & 1, a \neq 0 \\ {\textbf { Quotient to a Power Property }} & \left(\dfrac{a}{b}\right)^{m} &=&\dfrac{a^{m}}{b^{m}}, b \neq 0 \\ {\textbf { Properties of…
- https://query.libretexts.org/Francais/Livre_%3A_Alg%C3%A8bre_et_trigonom%C3%A9trie_(OpenStax)/01%3A_Pr%C3%A9requis/1.02%3A_Exposants_et_notation_scientifiqueLes mathématiciens, les scientifiques et les économistes rencontrent généralement de très grands et de très petits nombres. Mais il n'est peut-être pas évident à quel point ces chiffres sont courants ...Les mathématiciens, les scientifiques et les économistes rencontrent généralement de très grands et de très petits nombres. Mais il n'est peut-être pas évident à quel point ces chiffres sont courants dans la vie quotidienne.
- https://query.libretexts.org/Idioma_Portugues/Livro%3A_Elementary_Algebra_(OpenStax)/06%3A_Polin%C3%B4mios/6.07%3A_Expoentes_inteiros_e_nota%C3%A7%C3%A3o_cient%C3%ADfica\(\begin{array}{lrll}{\textbf { Product Property }}& a^{m} \cdot a^{n} &=&a^{m+n} \\ {\textbf { Power Property }} &\left(a^{m}\right)^{n} &=&a^{m \cdot n} \\ {\textbf { Product to a Power }} &(a b)^{m...\(\begin{array}{lrll}{\textbf { Product Property }}& a^{m} \cdot a^{n} &=&a^{m+n} \\ {\textbf { Power Property }} &\left(a^{m}\right)^{n} &=&a^{m \cdot n} \\ {\textbf { Product to a Power }} &(a b)^{m} &=&a^{m} b^{m} \\ {\textbf { Quotient Property }} & \dfrac{a^{m}}{a^{n}} &=&a^{m-n}, a \neq 0 \\ {\textbf { Zero Exponent Property }}& a^{0} &= & 1, a \neq 0 \\ {\textbf { Quotient to a Power Property }} & \left(\dfrac{a}{b}\right)^{m} &=&\dfrac{a^{m}}{b^{m}}, b \neq 0 \\ {\textbf { Properties of…
- https://query.libretexts.org/Idioma_Portugues/Livro%3A_Astronomia_(OpenStax)/01%3A_Ci%C3%AAncia_e_o_Universo_-_Um_breve_passeio/1.04%3A_N%C3%BAmeros_na_astronomiaEm astronomia, lidamos com distâncias em uma escala na qual você talvez nunca tenha pensado antes, com números maiores do que qualquer outra que você possa ter encontrado. Adotamos duas abordagens que...Em astronomia, lidamos com distâncias em uma escala na qual você talvez nunca tenha pensado antes, com números maiores do que qualquer outra que você possa ter encontrado. Adotamos duas abordagens que tornam um pouco mais fácil lidar com números astronômicos. Primeiro, usamos um sistema para escrever números grandes e pequenos chamados de notação científica (ou, às vezes, notação de potências de dez). Esse sistema é muito atraente porque elimina os muitos zeros que podem parecer opressores para
- https://query.libretexts.org/%D8%A7%D9%84%D9%84%D8%BA%D8%A9_%D8%A7%D9%84%D8%B9%D8%B1%D8%A8%D9%8A%D8%A9/%D9%83%D8%AA%D8%A7%D8%A8%3A_%D8%A7%D9%84%D8%AC%D8%A8%D8%B1_%D8%A7%D9%84%D8%A7%D8%A8%D8%AA%D8%AF%D8%A7%D8%A6%D9%8A_(OpenStax)/06%3A/6.07%3A_%D8%A7%D9%84%D8%A3%D8%B3%D8%B3_%D8%A7%D9%84%D8%B5%D8%AD%D9%8A%D8%AD%D8%A9_%D9%88%D8%A7%D9%84%D8%AA%D8%B1%D9%85%D9%8A%D8%B2_%D8%A7%D9%84%D8%B9%D9%84%D9%85%D9%8A\(\begin{array}{lrll}{\textbf { Product Property }}& a^{m} \cdot a^{n} &=&a^{m+n} \\ {\textbf { Power Property }} &\left(a^{m}\right)^{n} &=&a^{m \cdot n} \\ {\textbf { Product to a Power }} &(a b)^{m...\(\begin{array}{lrll}{\textbf { Product Property }}& a^{m} \cdot a^{n} &=&a^{m+n} \\ {\textbf { Power Property }} &\left(a^{m}\right)^{n} &=&a^{m \cdot n} \\ {\textbf { Product to a Power }} &(a b)^{m} &=&a^{m} b^{m} \\ {\textbf { Quotient Property }} & \dfrac{a^{m}}{a^{n}} &=&a^{m-n}, a \neq 0 \\ {\textbf { Zero Exponent Property }}& a^{0} &= & 1, a \neq 0 \\ {\textbf { Quotient to a Power Property }} & \left(\dfrac{a}{b}\right)^{m} &=&\dfrac{a^{m}}{b^{m}}, b \neq 0 \\ {\textbf { Properties of…
- https://query.libretexts.org/%E7%AE%80%E4%BD%93%E4%B8%AD%E6%96%87/%E5%BE%AE%E7%94%9F%E7%89%A9%E5%AD%A6_(OpenStax)/zz%3A_%E5%9B%9E%E6%9D%A5%E7%89%A9%E8%B4%A8/22%3A_%E6%95%B0%E5%AD%A6%E5%9F%BA%E7%A1%80%E7%9F%A5%E8%AF%86本附录回顾了微生物学中有用的数学基础知识,包括百分比、科学记数法和有效数字。
- https://query.libretexts.org/Francais/Livre_%3A_Alg%C3%A8bre_%C3%A9l%C3%A9mentaire_(OpenStax)/06%3A_Polyn%C3%B4mes/6.07%3A_Exposants_entiers_et_notation_scientifique\(\begin{array}{lrll}{\textbf { Product Property }}& a^{m} \cdot a^{n} &=&a^{m+n} \\ {\textbf { Power Property }} &\left(a^{m}\right)^{n} &=&a^{m \cdot n} \\ {\textbf { Product to a Power }} &(a b)^{m...\(\begin{array}{lrll}{\textbf { Product Property }}& a^{m} \cdot a^{n} &=&a^{m+n} \\ {\textbf { Power Property }} &\left(a^{m}\right)^{n} &=&a^{m \cdot n} \\ {\textbf { Product to a Power }} &(a b)^{m} &=&a^{m} b^{m} \\ {\textbf { Quotient Property }} & \dfrac{a^{m}}{a^{n}} &=&a^{m-n}, a \neq 0 \\ {\textbf { Zero Exponent Property }}& a^{0} &= & 1, a \neq 0 \\ {\textbf { Quotient to a Power Property }} & \left(\dfrac{a}{b}\right)^{m} &=&\dfrac{a^{m}}{b^{m}}, b \neq 0 \\ {\textbf { Properties of…
- https://query.libretexts.org/Francais/Alg%C3%A8bre_interm%C3%A9diaire_(OpenStax)/05%3A_Fonctions_polynomiales_et_polynomiales/5.03%3A_Propri%C3%A9t%C3%A9s_des_exposants_et_notation_scientifique\(\begin{array} {ll} {} &{\left(\dfrac{4p^{−3}}{q^2}\right)^2} \\ {\text{Use Quotient to a Power Property, }\left(\dfrac{a}{b}\right)^m=\dfrac{a^m}{b^m}.} &{\dfrac{(4p^{−3})^2}{(q^2)^2}} \\ {\text{Use...\(\begin{array} {ll} {} &{\left(\dfrac{4p^{−3}}{q^2}\right)^2} \\ {\text{Use Quotient to a Power Property, }\left(\dfrac{a}{b}\right)^m=\dfrac{a^m}{b^m}.} &{\dfrac{(4p^{−3})^2}{(q^2)^2}} \\ {\text{Use the Product to a Power Property, }(ab)^m=a^mb^m.} &{\dfrac{4^2(p^{−3})^2}{(q^2)^2}} \\ {\text{Simplify using the Power Property, }(a^m)^n=a^{m·n}.} &{\dfrac{16p^{−6}}{q^4}} \\ {\text{Use the definition of negative exponent.}} &{\dfrac{16}{q^4}·\dfrac{1}{p^6}} \\ {\text{Simplify.}} &{\dfrac{16}{p^6…
- https://query.libretexts.org/Kiswahili/Ramani%3A_Chuo_cha_Algebra_(OpenStax)/01%3A_Mahitaji/1.03%3A_Watazamaji_na_Nukuu_ya_kisayansiKwa idadi yoyote halisi\(a\) na idadi ya asili\(m\) na\(n\), kama vile\(m>n\), utawala wa quotient wa exponents inasema kwamba Ili kurahisisha nguvu ya bidhaa ya maneno mawili ya kielelezo, tunaweza k...Kwa idadi yoyote halisi\(a\) na idadi ya asili\(m\) na\(n\), kama vile\(m>n\), utawala wa quotient wa exponents inasema kwamba Ili kurahisisha nguvu ya bidhaa ya maneno mawili ya kielelezo, tunaweza kutumia nguvu ya utawala wa bidhaa wa vielelezo, ambayo huvunja nguvu za bidhaa ya mambo katika bidhaa za nguvu za mambo. Ili kurahisisha nguvu ya quotient ya maneno mawili, tunaweza kutumia nguvu ya utawala wa quotient, ambayo inasema kuwa nguvu ya quotient ya mambo ni quotient ya nguvu za mambo.
- https://query.libretexts.org/%D8%A7%D9%84%D9%84%D8%BA%D8%A9_%D8%A7%D9%84%D8%B9%D8%B1%D8%A8%D9%8A%D8%A9/%D8%A7%D9%84%D8%AC%D8%A8%D8%B1_%D8%A7%D9%84%D9%85%D8%AA%D9%88%D8%B3%D8%B7_(OpenStax)/05%3A_%D8%AF%D9%88%D8%A7%D9%84_%D9%83%D8%AB%D9%8A%D8%B1%D8%A9_%D8%A7%D9%84%D8%AD%D8%AF%D9%88%D8%AF_%D9%88%D8%AF%D9%88%D8%A7%D9%84_%D9%83%D8%AB%D9%8A%D8%B1%D8%A9_%D8%A7%D9%84%D8%AD%D8%AF%D9%88%D8%AF/5.03%3A_%D8%AE%D8%B5%D8%A7%D8%A6%D8%B5_%D8%A7%D9%84%D8%A3%D8%B3%D8%B3_%D9%88%D8%A7%D9%84%D8%B1%D9%85%D9%88%D8%B2_%D8%A7%D9%84%D8%B9%D9%84%D9%85%D9%8A%D8%A9\(\begin{array} {ll} {} &{\left(\dfrac{4p^{−3}}{q^2}\right)^2} \\ {\text{Use Quotient to a Power Property, }\left(\dfrac{a}{b}\right)^m=\dfrac{a^m}{b^m}.} &{\dfrac{(4p^{−3})^2}{(q^2)^2}} \\ {\text{Use...\(\begin{array} {ll} {} &{\left(\dfrac{4p^{−3}}{q^2}\right)^2} \\ {\text{Use Quotient to a Power Property, }\left(\dfrac{a}{b}\right)^m=\dfrac{a^m}{b^m}.} &{\dfrac{(4p^{−3})^2}{(q^2)^2}} \\ {\text{Use the Product to a Power Property, }(ab)^m=a^mb^m.} &{\dfrac{4^2(p^{−3})^2}{(q^2)^2}} \\ {\text{Simplify using the Power Property, }(a^m)^n=a^{m·n}.} &{\dfrac{16p^{−6}}{q^4}} \\ {\text{Use the definition of negative exponent.}} &{\dfrac{16}{q^4}·\dfrac{1}{p^6}} \\ {\text{Simplify.}} &{\dfrac{16}{p^6…
- https://query.libretexts.org/Francais/Microbiologie_(OpenStax)/zz%3A_Mati%C3%A8re_dorsale/22%3A_Principes_de_base_des_math%C3%A9matiquesCette annexe passe en revue les bases mathématiques utiles en microbiologie, y compris les pourcentages, la notation scientifique et les chiffres significatifs.