Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 
Global

Search

Searching in
About 13 results
  • https://query.libretexts.org/%E0%A4%B9%E0%A4%BF%E0%A4%A8%E0%A5%8D%E0%A4%A6%E0%A5%80_%E0%A4%AD%E0%A4%BE%E0%A4%B7%E0%A4%BE/%E0%A4%B5%E0%A5%8D%E0%A4%AF%E0%A4%B5%E0%A4%B8%E0%A4%BE%E0%A4%AF_%E0%A4%94%E0%A4%B0_%E0%A4%B8%E0%A4%BE%E0%A4%AE%E0%A4%BE%E0%A4%9C%E0%A4%BF%E0%A4%95_%E0%A4%B5%E0%A4%BF%E0%A4%9C%E0%A5%8D%E0%A4%9E%E0%A4%BE%E0%A4%A8_%E0%A4%95%E0%A5%87_%E0%A4%B2%E0%A4%BF%E0%A4%8F_%E0%A4%95%E0%A5%88%E0%A4%B2%E0%A4%95%E0%A5%81%E0%A4%B2%E0%A4%B8_%E0%A4%95%E0%A5%8B%E0%A4%B0%E0%A4%BF%E0%A4%95%E0%A5%8D%E0%A4%AF%E0%A5%81%E0%A4%B8%E0%A4%BE%E0%A4%87%E0%A4%9F_%E0%A4%B5%E0%A4%B0%E0%A5%8D%E0%A4%95%E0%A4%AC%E0%A5%81%E0%A4%95_(%E0%A4%A1%E0%A5%8B%E0%A4%AE%E0%A4%BF%E0%A4%82%E0%A4%97%E0%A5%81%E0%A4%8F%E0%A4%9C%E0%A4%BC%2C_%E0%A4%AE%E0%A4%BE%E0%A4%B0%E0%A5%8D%E0%A4%9F%E0%A4%BF%E0%A4%A8%E0%A5%87%E0%A4%9C%2C_%E0%A4%94%E0%A4%B0_%E0%A4%B8%E0%A4%BE%E0%A4%AF%E0%A4%95%E0%A4%B2%E0%A5%80)/07%3A_%E0%A4%B8%E0%A5%8D%E0%A4%9F%E0%A5%8D%E0%A4%B0%E0%A5%87%E0%A4%9F_%E0%A4%B2%E0%A4%BE%E0%A4%87%E0%A4%A8%E0%A5%8D%E0%A4%B8/7.04%3A_%E0%A4%B2%E0%A4%82%E0%A4%AC%E0%A4%B5%E0%A4%A4_%E0%A4%94%E0%A4%B0_%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A5%88%E0%A4%A4%E0%A4%BF%E0%A4%9C_%E0%A4%B0%E0%A5%87%E0%A4%96%E0%A4%BE%E0%A4%93%E0%A4%82_%E0%A4%95%E0%A5%87_%E0%A4%B8%E0%A4%AE%E0%A5%80%E0%A4%95%E0%A4%B0%E0%A4%A3
    एक लंबवत रेखा का समीकरण x = c के रूप में होता है, जहां c कोई वास्तविक संख्या है। लंबवत रेखा हमेशा बिंदु (c, 0) पर x−अक्ष को काटती है। एक ऊर्ध्वाधर रेखा का ढलान अपरिभाषित है। क्षैतिज रेखा का समीकरण y =...एक लंबवत रेखा का समीकरण x = c के रूप में होता है, जहां c कोई वास्तविक संख्या है। लंबवत रेखा हमेशा बिंदु (c, 0) पर x−अक्ष को काटती है। एक ऊर्ध्वाधर रेखा का ढलान अपरिभाषित है। क्षैतिज रेखा का समीकरण y = k के रूप में होता है, जहाँ k कोई वास्तविक संख्या है। क्षैतिज रेखा हमेशा बिंदु (0, के) पर y- अक्ष को काटती है। क्षैतिज रेखा का ढलान शून्य है।
  • https://query.libretexts.org/Kiswahili/Calculus_kwa_Biashara_na_Sayansi_ya_Jamii_Kitabu_cha_Kazi_(Dominguez%2C_Martinez%2C_na_Saykali)/07%3A_Mstari_wa_moja_kwa_moja/7.04%3A_Ulinganisho_wa_mistari_ya_Wima_na_ya_usawa
    Ulinganisho wa mstari wa wima ni wa fomu x = c, ambapo c ni namba yoyote halisi. Mstari wa wima daima utazunguka x-axis kwenye hatua (c,0). Mteremko wa mstari wa wima haujafafanuliwa. Ulinganisho wa m...Ulinganisho wa mstari wa wima ni wa fomu x = c, ambapo c ni namba yoyote halisi. Mstari wa wima daima utazunguka x-axis kwenye hatua (c,0). Mteremko wa mstari wa wima haujafafanuliwa. Ulinganisho wa mstari usio na usawa ni wa fomu y = k, ambapo k ni namba yoyote halisi. Mstari usio na usawa utaingiliana na mhimili wa y kwa uhakika (0, k). Mteremko wa mstari usio na usawa ni sifuri.
  • https://query.libretexts.org/Idioma_Portugues/Apostila_de_requisitos_basicos_de_calculo_para_negocios_e_ciencias_sociais_(Dominguez_Martinez_e_Saykali)/07%3A_Linhas_retas/7.04%3A_Equa%C3%A7%C3%B5es_de_linhas_verticais_e_horizontais
    A equação de uma linha vertical tem a forma x = c, onde c é qualquer número real. A linha vertical sempre cruzará o eixo x no ponto (c,0). A inclinação de uma linha vertical é indefinida. A equação de...A equação de uma linha vertical tem a forma x = c, onde c é qualquer número real. A linha vertical sempre cruzará o eixo x no ponto (c,0). A inclinação de uma linha vertical é indefinida. A equação de uma linha horizontal tem a forma y = k, onde k é qualquer número real. A linha horizontal sempre cruzará o eixo y no ponto (0, k). A inclinação de uma linha horizontal é zero.
  • https://query.libretexts.org/%D8%A7%D9%84%D9%84%D8%BA%D8%A9_%D8%A7%D9%84%D8%B9%D8%B1%D8%A8%D9%8A%D8%A9/(__)/07%3A_%D8%A7%D9%84%D8%AE%D8%B7%D9%88%D8%B7_%D8%A7%D9%84%D9%85%D8%B3%D8%AA%D9%82%D9%8A%D9%85%D8%A9/7.04%3A_%D9%85%D8%B9%D8%A7%D8%AF%D9%84%D8%A7%D8%AA_%D8%A7%D9%84%D8%AE%D8%B7%D9%88%D8%B7_%D8%A7%D9%84%D9%85%D8%B3%D8%AA%D9%82%D9%8A%D9%85%D8%A9_%D8%A7%D9%84%D8%B1%D8%A3%D8%B3%D9%8A%D8%A9_%D9%88%D8%A7%D9%84%D8%A3%D9%81%D9%82%D9%8A%D8%A9
    معادلة الخط العمودي هي من الشكل x = c، حيث c هو أي رقم حقيقي. سيتقاطع الخط العمودي دائمًا مع المحور x عند النقطة (c,0). ميل الخط العمودي غير محدد. معادلة الخط الأفقي هي من الشكل y = k، حيث k هو أي رقم...معادلة الخط العمودي هي من الشكل x = c، حيث c هو أي رقم حقيقي. سيتقاطع الخط العمودي دائمًا مع المحور x عند النقطة (c,0). ميل الخط العمودي غير محدد. معادلة الخط الأفقي هي من الشكل y = k، حيث k هو أي رقم حقيقي. سيتقاطع الخط الأفقي دائمًا مع المحور y عند النقطة (0، k). ميل الخط الأفقي هو صفر.
  • https://query.libretexts.org/Kiswahili/Precalculus_(OpenStax)/02%3A_Kazi_za_mstari/2.02%3A_Grafu_ya_Kazi_za_Mstari
    Kazi za mstari zinaweza kupigwa kwa pointi za kupanga au kwa kutumia y-intercept na mteremko. Grafu za kazi za mstari zinaweza kubadilishwa kwa kutumia mabadiliko ya juu, chini, kushoto, au kulia, na ...Kazi za mstari zinaweza kupigwa kwa pointi za kupanga au kwa kutumia y-intercept na mteremko. Grafu za kazi za mstari zinaweza kubadilishwa kwa kutumia mabadiliko ya juu, chini, kushoto, au kulia, na pia kwa njia ya kunyoosha, compressions, na kutafakari. Y-intercept na mteremko wa mstari inaweza kutumika kuandika equation ya mstari. X-intercept ni hatua ambayo grafu ya kazi ya mstari huvuka x-axis. Mistari ya usawa imeandikwa kama:f(x)=b. Mstari wa wima umeandikwa kama:x=b.
  • https://query.libretexts.org/Kiswahili/Ramani%3A_Chuo_cha_Algebra_(OpenStax)/02%3A_Ulinganifu_na_Usawa/2.03%3A_Ulinganisho_wa_mstari_katika_Variable_Moja
    Equation linear ni equation ya mstari wa moja kwa moja, iliyoandikwa katika variable moja. Nguvu pekee ya kutofautiana ni 1. Ulinganyo wa mstari katika variable moja inaweza kuchukua fomu ax+b=0ax+b=0...Equation linear ni equation ya mstari wa moja kwa moja, iliyoandikwa katika variable moja. Nguvu pekee ya kutofautiana ni 1. Ulinganyo wa mstari katika variable moja inaweza kuchukua fomu ax+b=0ax+b=0 na hutatuliwa kwa kutumia shughuli za msingi za algebraic.
  • https://query.libretexts.org/Idioma_Portugues/Livro%3A_Algebra_e_Trigonometria_(OpenStax)/02%3A_Equa%C3%A7%C3%B5es_e_desigualdades/2.02%3A_Equa%C3%A7%C3%B5es_lineares_em_uma_vari%C3%A1vel
    Uma equação linear é uma equação de uma linha reta, escrita em uma variável. A única potência da variável é 1. As equações lineares em uma variável podem assumir a forma ax+b=0ax+b=0 e são resolvidas ...Uma equação linear é uma equação de uma linha reta, escrita em uma variável. A única potência da variável é 1. As equações lineares em uma variável podem assumir a forma ax+b=0ax+b=0 e são resolvidas usando operações algébricas básicas.
  • https://query.libretexts.org/Francais/Livre_%3A_Alg%C3%A8bre_et_trigonom%C3%A9trie_(OpenStax)/02%3A_%C3%89quations_et_in%C3%A9galit%C3%A9s/2.02%3A_%C3%89quations_lin%C3%A9aires_dans_une_variable
    Une équation linéaire est une équation d'une ligne droite, écrite dans une variable. La seule puissance de la variable est 1. Les équations linéaires d'une variable peuvent prendre la forme ax+b=0ax+b...Une équation linéaire est une équation d'une ligne droite, écrite dans une variable. La seule puissance de la variable est 1. Les équations linéaires d'une variable peuvent prendre la forme ax+b=0ax+b=0 et sont résolues à l'aide d'opérations algébriques de base.
  • https://query.libretexts.org/Kiswahili/Kitabu%3A_Algebra_na_Trigonometry_(OpenStax)/02%3A_Ulinganifu_na_Usawa/2.02%3A_Ulinganisho_wa_mstari_katika_Tofauti_moja
    Equation linear ni equation ya mstari wa moja kwa moja, iliyoandikwa katika variable moja. Nguvu pekee ya kutofautiana ni 1. Ulinganyo wa mstari katika variable moja inaweza kuchukua fomu ax+b=0ax+b=0...Equation linear ni equation ya mstari wa moja kwa moja, iliyoandikwa katika variable moja. Nguvu pekee ya kutofautiana ni 1. Ulinganyo wa mstari katika variable moja inaweza kuchukua fomu ax+b=0ax+b=0 na hutatuliwa kwa kutumia shughuli za msingi za algebraic.
  • https://query.libretexts.org/Idioma_Portugues/Pre-calculo_(OpenStax)/02%3A_Fun%C3%A7%C3%B5es_lineares/2.02%3A_Gr%C3%A1ficos_de_fun%C3%A7%C3%B5es_lineares
    As funções lineares podem ser representadas graficamente traçando pontos ou usando o intercepto y e a inclinação. Gráficos de funções lineares podem ser transformados usando deslocamentos para cima, p...As funções lineares podem ser representadas graficamente traçando pontos ou usando o intercepto y e a inclinação. Gráficos de funções lineares podem ser transformados usando deslocamentos para cima, para baixo, para a esquerda ou para a direita, bem como por meio de alongamentos, compressões e reflexões. O intercepto y e a inclinação de uma linha podem ser usados para escrever a equação de uma linha. O intercepto x é o ponto em que o gráfico de uma função linear cruza o eixo x. As linhas horizon
  • https://query.libretexts.org/Francais/Cahier_d'exercices_compl%C3%A9mentaires_sur_le_calcul_pour_les_affaires_et_les_sciences_sociales_(Dominguez%2C_Martinez_et_Saykali)/07%3A_Lignes_droites/7.04%3A_%C3%89quations_des_droites_verticales_et_horizontales
    L'équation d'une ligne verticale est de la forme x = c, où c est un nombre réel quelconque. La ligne verticale croise toujours l'axe X au point (c,0). La pente d'une ligne verticale n'est pas définie....L'équation d'une ligne verticale est de la forme x = c, où c est un nombre réel quelconque. La ligne verticale croise toujours l'axe X au point (c,0). La pente d'une ligne verticale n'est pas définie. L'équation d'une ligne horizontale est de la forme y = k, où k est un nombre réel quelconque. La ligne horizontale croise toujours l'axe y au point (0, k). La pente d'une ligne horizontale est nulle.