Loading [MathJax]/jax/output/SVG/config.js
Skip to main content
Library homepage
 
Global

Search

Searching in
About 6 results
  • https://query.libretexts.org/%D8%A7%D9%84%D9%84%D8%BA%D8%A9_%D8%A7%D9%84%D8%B9%D8%B1%D8%A8%D9%8A%D8%A9/%D9%83%D8%AA%D8%A7%D8%A8%3A_%D8%A7%D9%84%D8%AC%D8%A8%D8%B1_%D8%A7%D9%84%D8%A7%D8%A8%D8%AA%D8%AF%D8%A7%D8%A6%D9%8A_(OpenStax)/09%3A/9.07%3A_%D8%AC%D8%B0%D9%88%D8%B1_%D8%A3%D8%B9%D9%84%D9%89
    \(\sqrt[3]{8x^3}·\sqrt[3]{3x}−\sqrt[3]{−27x^6}·\sqrt[3]{3x}\) \(\sqrt[3]{(2x)^3}·\sqrt[3]{3x}−\sqrt[3]{(−3x^2)^3}·\sqrt[3]{3x}\) \(\sqrt[4]{81y^8}·\sqrt[4]{2y}+\sqrt[4]{256y^4}·\sqrt[4]{2y}\) \(\sqrt[...\(\sqrt[3]{8x^3}·\sqrt[3]{3x}−\sqrt[3]{−27x^6}·\sqrt[3]{3x}\) \(\sqrt[3]{(2x)^3}·\sqrt[3]{3x}−\sqrt[3]{(−3x^2)^3}·\sqrt[3]{3x}\) \(\sqrt[4]{81y^8}·\sqrt[4]{2y}+\sqrt[4]{256y^4}·\sqrt[4]{2y}\) \(\sqrt[4]{(3y^2)^4}·\sqrt[4]{2y}+\sqrt[4]{(4y)^4}·\sqrt[4]{2y}\) \(\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\)و\(\frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}\)
  • https://query.libretexts.org/%E7%AE%80%E4%BD%93%E4%B8%AD%E6%96%87/%E5%9B%BE%E4%B9%A6%EF%BC%9A%E5%9F%BA%E6%9C%AC%E4%BB%A3%E6%95%B0_(OpenStax)/09%3A_%E6%A0%B9%E6%BA%90%E5%92%8C%E6%BF%80%E8%BF%9B%E5%88%86%E5%AD%90/9.07%3A_%E6%9B%B4%E9%AB%98%E7%9A%84%E6%A0%B9%E6%BA%90
    \[\begin{array}{cc} {\text{when n is odd}}&{\sqrt[n]{a^n}=a}\\ {\text{when n is even}}&{\sqrt[n]{a^n}=|a|}\\ \nonumber \end{array}\] \(\sqrt[3]{8x^3}·\sqrt[3]{3x}−\sqrt[3]{−27x^6}·\sqrt[3]{3x}\) \(\sq...\[\begin{array}{cc} {\text{when n is odd}}&{\sqrt[n]{a^n}=a}\\ {\text{when n is even}}&{\sqrt[n]{a^n}=|a|}\\ \nonumber \end{array}\] \(\sqrt[3]{8x^3}·\sqrt[3]{3x}−\sqrt[3]{−27x^6}·\sqrt[3]{3x}\) \(\sqrt[3]{(2x)^3}·\sqrt[3]{3x}−\sqrt[3]{(−3x^2)^3}·\sqrt[3]{3x}\) \(\sqrt[4]{(3y^2)^4}·\sqrt[4]{2y}+\sqrt[4]{(4y)^4}·\sqrt[4]{2y}\) \(\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\)和\(\frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}\)
  • https://query.libretexts.org/Idioma_Portugues/Livro%3A_Elementary_Algebra_(OpenStax)/09%3A_Ra%C3%ADzes_e_radicais/9.07%3A_Ra%C3%ADzes_superiores
    \[\begin{array}{cc} {\text{when n is odd}}&{\sqrt[n]{a^n}=a}\\ {\text{when n is even}}&{\sqrt[n]{a^n}=|a|}\\ \nonumber \end{array}\] Se a fração dentro do radical não puder ser simplificada, usamos a ...\[\begin{array}{cc} {\text{when n is odd}}&{\sqrt[n]{a^n}=a}\\ {\text{when n is even}}&{\sqrt[n]{a^n}=|a|}\\ \nonumber \end{array}\] Se a fração dentro do radical não puder ser simplificada, usamos a primeira forma da propriedade do quociente para reescrever a expressão como o quociente de dois radicais. Quando n é um número ímpar,\(\sqrt[n]{a}\) é um número real para todos os valores de a.
  • https://query.libretexts.org/Francais/Livre_%3A_Alg%C3%A8bre_%C3%A9l%C3%A9mentaire_(OpenStax)/09%3A_Racines_et_radicaux/9.07%3A_Racines_sup%C3%A9rieures
    Nous simplifierons les expressions avec des racines supérieures de la même manière que nous avons simplifié les expressions avec des racines carrées. Si la fraction à l'intérieur du radical ne peut pa...Nous simplifierons les expressions avec des racines supérieures de la même manière que nous avons simplifié les expressions avec des racines carrées. Si la fraction à l'intérieur du radical ne peut pas être simplifiée, nous utilisons la première forme de la propriété du quotient pour réécrire l'expression sous la forme du quotient de deux radicaux. \(\sqrt[3]{(2x)^3}·\sqrt[3]{3x}−\sqrt[3]{(−3x^2)^3}·\sqrt[3]{3x}\)
  • https://query.libretexts.org/Kiswahili/Kitabu%3A_Elementary_Algebra_(OpenStax)/09%3A_Mizizi_na_Radicals/9.07%3A_Mizizi_ya_Juu
    Sisi kurahisisha maneno na mizizi ya juu kwa njia sawa sawa na sisi rahisi maneno na mizizi ya mraba. Tutazalisha Mali ya Bidhaa ya Mizizi ya Mraba ili kuingiza mizizi yoyote ya integer\(n \ge 2\). Ik...Sisi kurahisisha maneno na mizizi ya juu kwa njia sawa sawa na sisi rahisi maneno na mizizi ya mraba. Tutazalisha Mali ya Bidhaa ya Mizizi ya Mraba ili kuingiza mizizi yoyote ya integer\(n \ge 2\). Ikiwa sehemu ndani ya radical haiwezi kuwa rahisi, tunatumia fomu ya kwanza ya Mali ya Quotient kuandika upya usemi kama quotient ya radicals mbili. Tunaweza kuongeza na kuondoa mizizi ya juu kama tulivyoongeza na kuondokana na mizizi ya mraba.
  • https://query.libretexts.org/%D7%A2%D7%91%D7%A8%D7%99%D7%AA/%D7%90%D7%9C%D7%92%D7%91%D7%A8%D7%94_%D7%99%D7%A1%D7%95%D7%93%D7%99%D7%AA_1e_(OpenStax)/09%3A_%D7%A9%D7%95%D7%A8%D7%A9%D7%99%D7%9D_%D7%95%D7%A8%D7%93%D7%99%D7%A7%D7%9C%D7%99%D7%9D/9.07%3A_%D7%A9%D7%95%D7%A8%D7%A9%D7%99%D7%9D_%D7%92%D7%91%D7%95%D7%94%D7%99%D7%9D_%D7%99%D7%95%D7%AA%D7%A8
    \[\begin{array}{cc} {\text{when n is odd}}&{\sqrt[n]{a^n}=a}\\ {\text{when n is even}}&{\sqrt[n]{a^n}=|a|}\\ \nonumber \end{array}\] \(\sqrt[3]{8x^3}·\sqrt[3]{3x}−\sqrt[3]{−27x^6}·\sqrt[3]{3x}\) \(\sq...\[\begin{array}{cc} {\text{when n is odd}}&{\sqrt[n]{a^n}=a}\\ {\text{when n is even}}&{\sqrt[n]{a^n}=|a|}\\ \nonumber \end{array}\] \(\sqrt[3]{8x^3}·\sqrt[3]{3x}−\sqrt[3]{−27x^6}·\sqrt[3]{3x}\) \(\sqrt[3]{(2x)^3}·\sqrt[3]{3x}−\sqrt[3]{(−3x^2)^3}·\sqrt[3]{3x}\) \(\sqrt[4]{(3y^2)^4}·\sqrt[4]{2y}+\sqrt[4]{(4y)^4}·\sqrt[4]{2y}\) \(\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\)ו \(\frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}\)