Skip to main content
Global

6.1E: Mazoezi

  • Page ID
    177872
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Kutambua Polynomials, Monomials, Binomials, na Trinomials

    Katika mazoezi yafuatayo, onyesha kama kila moja ya polynomials zifuatazo ni monomial, binomial, trinomial, au polynomial nyingine.

    Zoezi 1
    1. \(81b^5−24b^3+1\)
    2. \(5c^3+11c^2−c−8\)
    3. \(\frac{14}{15}y+\frac{1}{7}\)
    4. \(5\)
    5. \(4y+17\)
    Jibu
    1. ya trinomial
    2. polynomial
    3. binomial
    4. monomial
    5. binomial
    Zoezi 2
    1. \(x^2−y^2\)
    2. \(−13c^4\)
    3. \(x^2+5x−7\)
    4. \(x^{2}y^2−2xy+8\)
    5. \(19\)
    Zoezi la 3
    1. \(8−3x\)
    2. \(z^2−5z−6\)
    3. \(y^3−8y^2+2y−16\)
    4. \(81b^5−24b^3+1\)
    5. \(−18\)
    Jibu
    1. binomial
    2. ya trinomial
    3. polynomial
    4. ya trinomial
    5. monomial
    Zoezi 4
    1. \(11y^2\)
    2. \(−73\)
    3. \(6x^2−3xy+4x−2y+y^2\)
    4. \(4y+17\)
    5. \(5c^3+11c^2−c−8\)

    Kuamua Shahada ya Polynomials

    Katika mazoezi yafuatayo, tambua kiwango cha kila polynomial.

    Zoezi 5
    1. \(6a^2+12a+14\)
    2. \(18xy^{2}z\)
    3. \(5x+2\)
    4. \(y^3−8y^2+2y−16\)
    5. \(−24\)
    Jibu
    1. 2
    2. 4
    3. 1
    4. 3
    5. 0
    Zoezi 6
    1. \(9y^3−10y^2+2y−6\)
    2. \(−12p^4\)
    3. \(a^2+9a+18\)
    4. \(20x^{2}y^2−10a^{2}b^2+30\)
    5. \(17\)
    Zoezi 7
    1. \(14−29x\)
    2. \(z^2−5z−6\)
    3. \(y^3−8y^2+2y−16\)
    4. \(23ab^2−14\)
    5. \(−3\)
    Jibu
    1. 1
    2. 2
    3. 3
    4. 3
    5. 0
    Zoezi 8
    1. \(62y^2\)
    2. \(15\)
    3. \(6x^2−3xy+4x−2y+y^2\)
    4. \(10−9x\)
    5. \(m^4+4m^3+6m^2+4m+1\)

    Kuongeza na Ondoa Monomials

    Katika mazoezi yafuatayo, ongeza au uondoe monomials.

    Zoezi 9

    \(7x^2+5x^2\)

    Jibu

    \(12x^2\)

    Zoezi 10

    \(4y^3+6y^3\)

    Zoezi 11

    \(−12w+18w\)

    Jibu

    \(6w\)

    Zoezi 12

    \(−3m+9m\)

    Zoezi 13

    \(4a−9a\)

    Jibu

    \(−5a\)

    Zoezi 14

    \(−y−5y\)

    Zoezi 15

    \(28x−(−12x)\)

    Jibu

    \(40x\)

    Zoezi 16

    \(13z−(−4z)\)

    Zoezi 17

    \(−5b−17b\)

    Jibu

    \(−22b\)

    Zoezi 18

    \(−10x−35x\)

    Zoezi 19

    \(12a+5b−22a\)

    Jibu

    \(−10a+5b\)

    Zoezi 20

    \(14x−3y−13x\)

    Zoezi 21

    \(2a^2+b^2−6a^2\)

    Jibu

    \(−4a^2+b^2\)

    Zoezi 22

    \(5u^2+4v^2−6u^2\)

    Zoezi 23

    \(xy^2−5x−5y^2\)

    Jibu

    \(xy^2−5x−5y^2\)

    Zoezi 24

    \(pq^2−4p−3q^2\)

    Zoezi 25

    \(a^{2}b−4a−5ab^2\)

    Jibu

    \(a^{2}b−4a−5ab^2\)

    Zoezi 26

    \(x^{2}y−3x+7xy^2\)

    Zoezi 27

    \(12a+8b\)

    Jibu

    \(12a+8b\)

    Zoezi 28

    \(19y+5z\)

    Zoezi 29

    Ongeza:\(4a,\,−3b,\,−8a\)

    Jibu

    \(−4a−3b\)

    Zoezi 30

    Ongeza:\(4x,\,3y,\,−3x\)

    Zoezi 31

    Ondoa\(5x^6\) kutoka\(−12x^6\)

    Jibu

    \(−17x^6\)

    Zoezi 32

    Ondoa\(2p^4\) kutoka\(−7p^4\)

    ​​​​​​

    Kuongeza na Ondoa Polynomials

    Katika mazoezi yafuatayo, ongeza au uondoe polynomials.

    Zoezi la 33

    \((5y^2+12y+4)+(6y^2−8y+7)\)

    Jibu

    \(11y^2+4y+11\)

    Zoezi 34

    \((4y^2+10y+3)+(8y^2−6y+5)\)

    Zoezi 35

    \((x^2+6x+8)+(−4x^2+11x−9)\)

    Jibu

    \(−3x^2+17x−1\)

    Zoezi 36

    \((y^2+9y+4)+(−2y^2−5y−1)\)

    Zoezi 37

    \((8x^2−5x+2)+(3x^2+3)\)

    Jibu

    \(11x^2−5x+5\)

    Zoezi 38

    \((7x^2−9x+2)+(6x^2−4)\)

    Zoezi 39

    \((5a^2+8)+(a^2−4a−9)\)

    Jibu

    \(6a^2−4a−1\)

    Zoezi 40

    \((p^2−6p−18)+(2p^2+11)\)

    Zoezi 41

    \((4m^2−6m−3)−(2m^2+m−7)\)

    Jibu

    \(2m^2−7m+4\)

    Zoezi 42

    \((3b^2−4b+1)−(5b^2−b−2)\)

    Zoezi 43

    \((a^2+8a+5)−(a^2−3a+2)\)

    Jibu

    \(11a+3\)

    Zoezi 44

    \((b^2−7b+5)−(b^2−2b+9)\)

    Zoezi 45

    \((12s^2−15s)−(s−9)\)

    Jibu

    \(12s^2−16s+9\)

    Zoezi 46

    \((10r^2−20r)−(r−8)\)

    Zoezi 47

    Ondoa\((9x^2+2)\) kutoka\((12x^2−x+6)\)

    Jibu

    \(3x^2−x+4\)

    Zoezi 48

    Ondoa\((5y^2−y+12)\) kutoka\((10y^2−8y−20)\)

    Zoezi 49

    Ondoa\((7w^2−4w+2)\) kutoka\((8w^2−w+6)\)

    Jibu

    \(w^2+3w+4\)

    Zoezi 50

    Ondoa\((5x^2−x+12)\) kutoka\((9x^2−6x−20)\)

    Zoezi 51

    Kupata jumla ya\((2p^3−8)\) na\((p^2+9p+18)\)

    Jibu

    \(2p^3+p^2+9p+10\)

    Zoezi 52

    Kupata jumla ya
    \((q^2+4q+13)\) na\((7q^3−3)\)

    Zoezi 53

    Kupata jumla ya\((8a^3−8a)\) na\((a^2+6a+12)\)

    Jibu

    \(8a^3+a^2−2a+12\)

    Zoezi 54

    Kupata jumla ya
    \((b^2+5b+13)\) na\((4b^3−6)\)

    Zoezi 55

    Kupata tofauti ya

    \((w^2+w−42)\)na
    \((w^2−10w+24)\).

    Jibu

    \(11w−66\)

    Zoezi 56

    Kupata tofauti ya
    \((z^2−3z−18)\) na
    \((z^2+5z−20)\)

    Zoezi 57

    Kupata tofauti ya
    \((c^2+4c−33)\) na
    \((c^2−8c+12)\)

    Jibu

    \(12c−45\)

    Zoezi 58

    Kupata tofauti ya
    \((t^2−5t−15)\) na
    \((t^2+4t−17)\)

    Zoezi 59

    \((7x^2−2xy+6y^2)+(3x^2−5xy)\)

    Jibu

    \(10x^2−7xy+6y^2\)

    Zoezi 60

    \((−5x^2−4xy−3y^2)+(2x^2−7xy)\)

    Zoezi 61

    \((7m^2+mn−8n^2)+(3m^2+2mn)\)

    Jibu

    \(10m^2+3mn−8n^2\)

    Zoezi 62

    \((2r^2−3rs−2s^2)+(5r^2−3rs)\)

    Zoezi 63

    \((a^2−b^2)−(a^2+3ab−4b^2)\)

    Jibu

    \(−3ab+3b^2\)

    Zoezi 64

    \((m^2+2n^2)−(m^2−8mn−n^2)\)

    Zoezi 65

    \((u^2−v^2)−(u^2−4uv−3v^2)\)

    Jibu

    \(4uv+2v^2\)

    Zoezi 66

    \((j^2−k^2)−(j^2−8jk−5k^2)\)

    Zoezi 67

    \((p^3−3p^{2}q)+(2pq^2+4q^3) −(3p^{2}q+pq^2)\)

    Jibu

    \(p^3−6p^{2}q+pq^2+4q^3\)

    Zoezi 68

    \((a^3−2a^{2}b)+(ab^2+b^3)−(3a^{2}b+4ab^2)\)

    Zoezi 69

    \((x^3−x^{2}y)−(4xy^2−y^3)+(3x^{2}y−xy^2)\)

    Jibu

    \(x^3+2x^{2}y−5xy^2+y^3\)

    Zoezi 70

    \((x^3−2x^{2}y)−(xy^2−3y^3)−(x^{2}y−4xy^2)\)

    Tathmini Polynomial kwa Thamani iliyotolewa

    Katika mazoezi yafuatayo, tathmini kila polynomial kwa thamani iliyotolewa.

    Zoezi 71

    Tathmini\(8y^2−3y+2\) wakati:

    1. \(y=5\)
    2. \(y=−2\)
    3. \(y=0\)
    Jibu
    1. \(187\)
    2. \(46\)
    3. \(2\)
    Zoezi 72

    Tathmini\(5y^2−y−7\) wakati:

    1. \(y=−4\)
    2. \(y=1\)
    3. \(y=0\)
    Zoezi 73

    Tathmini\(4−36x\) wakati:

    1. \(x=3\)
    2. \(x=0\)
    3. \(x=−1\)
    Jibu
    1. \(−104\)
    2. \(4\)
    3. \(40\)
    Zoezi 74

    Tathmini\(16−36x^2\) wakati:

    1. \(x=−1\)
    2. \(x=0\)
    3. \(x=2\)
    Zoezi 75

    Mchoraji matone brashi kutoka\(75\) miguu jukwaa juu. Polynomial\(−16t^2+75\) inatoa urefu wa\(t\) sekunde za brashi baada ya kushuka. Pata urefu baada ya\(t=2\) sekunde.

    Jibu

    \(11\)

    Zoezi 76

    Msichana hupiga mpira kwenye mwamba ndani ya bahari. Polynomial\(−16t^2+250\) inatoa urefu wa\(t\) sekunde za mpira baada ya kushuka kutoka kwenye mwamba mrefu wa mguu 250. Pata urefu baada ya\(t=2\) sekunde.

    Zoezi 77

    Mtengenezaji wa wasemaji wa sauti ya stereo amegundua kwamba mapato yaliyopatikana kutokana na kuuza wasemaji kwa gharama ya\(p\) dola kila mmoja hutolewa na polynomial\(−4p^2+420p\). Kupata mapato ya kupokea wakati\(p=60\) dola.

    Jibu

    \($10,800\)

    Zoezi 78

    Mtengenezaji wa viatu vya hivi karibuni vya mpira wa kikapu amegundua kwamba mapato yaliyopatikana kutokana na kuuza viatu kwa gharama ya\(p\) dola kila mmoja hutolewa na polynomial\(−4p^2+420p\). Kupata mapato ya kupokea wakati\(p=90\) dola.

    kila siku Math

    Zoezi 79

    Ufanisi wa mafuta ufanisi wa mafuta (katika maili kwa kila lita) ya gari kwenda kwa kasi ya\(x\) maili kwa saa hutolewa na polynomial\(−\frac{1}{150}x^2+\frac{1}{3}x\), ambapo\(x=30\) mph.

    Jibu

    \(4\)

    Zoezi 80

    Kuacha Umbali Idadi ya miguu inachukua kwa gari kusafiri kwa\(x\) maili kwa saa kuacha juu ya kavu, kiwango halisi hutolewa na polynomial\(0.06x^2+1.1x\), ambapo\(x=40\) mph.

    Zoezi 81

    Gharama ya kukodisha Gharama ya kukodisha safi ya rug kwa\(d\) siku hutolewa na polynomial\(5.50d+25\). Pata gharama ya kukodisha safi kwa\(6\) siku.

    Jibu

    \($58\)

    Zoezi 82

    Urefu wa Projectile Urefu (kwa miguu) wa kitu kilichopangwa juu hutolewa na polynomial\(−16t^2+60t+90\) ambapo\(t\) inawakilisha wakati kwa sekunde. Pata urefu baada ya\(t=2.5\) sekunde.

    Zoezi 83

    Joto Conversion Joto katika digrii Fahrenheit hutolewa na polynomial\(\frac{9}{5}c+32\) ambapo\(c\) inawakilisha joto katika digrii Celsius. Kupata joto katika digrii Fahrenheit wakati\(c=65°\).

    Jibu

    \(149°\)F

    Mazoezi ya kuandika

    Zoezi 84

    Kutumia maneno yako mwenyewe, kuelezea tofauti kati ya monomial, binomial, na trinomial.

    Zoezi 85

    Kutumia maneno yako mwenyewe, kuelezea tofauti kati ya polynomial na maneno tano na polynomial yenye shahada ya 5.

    Jibu

    Majibu yatatofautiana.

    Zoezi 86

    Ariana anadhani jumla\(6y^2+5y^4\) ni\(11y^6\)

    Zoezi 87

    Jonathan anadhani kwamba\(\frac{1}{3}\) na wote\(\frac{1}{x}\) ni monomials. Ni nini kibaya na hoja zake?

    Jibu

    Majibu yatatofautiana.

    Self Check

    Baada ya kukamilisha mazoezi, tumia orodha hii ili kutathmini ujuzi wako wa malengo ya sehemu hii.

    Hii ni meza ambayo ina safu sita na nguzo nne. Katika mstari wa kwanza, ambayo ni mstari wa kichwa, seli zinasoma kutoka kushoto kwenda kulia “Ninaweza...,” “Kwa ujasiri,” “Kwa msaada fulani,” na “Hakuna-Siipati!” Safu ya kwanza chini ya “naweza...” inasomeka “kutambua polynomials, monomials, binomials, na trinomials,” “kuamua kiwango cha polynomials,” “kuongeza na kuondoa monomials,” “kuongeza na kuondoa polynomials,” na “tathmini polynomial kwa thamani fulani.” Wengine wa seli ni tupu.

    b Kama wengi wa hundi yako walikuwa:

    ... kwa ujasiri. Hongera! Umefanikiwa malengo katika sehemu hii. Fikiria ujuzi wa kujifunza uliyotumia ili uweze kuendelea kuitumia. Ulifanya nini ili uwe na ujasiri wa uwezo wako wa kufanya mambo haya? Kuwa maalum.

    ... kwa msaada fulani. Hii lazima kushughulikiwa haraka kwa sababu mada huna bwana kuwa mashimo katika barabara yako ya mafanikio. Katika hesabu kila mada hujenga juu ya kazi ya awali. Ni muhimu kuhakikisha una msingi imara kabla ya kuendelea. Nani unaweza kuomba msaada? Washiriki wenzako na mwalimu ni rasilimali nzuri. Je, kuna mahali kwenye chuo ambapo waalimu hisabati zinapatikana? Je, ujuzi wako wa kujifunza unaweza kuboreshwa?

    ... hapana - Siipati! Hii ni ishara ya onyo na haipaswi kupuuza. Unapaswa kupata msaada mara moja au utazidiwa haraka. Angalia mwalimu wako haraka iwezekanavyo kujadili hali yako. Pamoja unaweza kuja na mpango wa kupata msaada unayohitaji.