6.2: Tumia Mali ya kuzidisha ya Watazamaji
- Page ID
- 177804
Mwishoni mwa sehemu hii, utaweza:
- Kurahisisha maneno na watazamaji
- Kurahisisha maneno kwa kutumia Mali ya Bidhaa kwa Watazamaji
- Kurahisisha maneno kwa kutumia Mali ya Nguvu kwa Watazamaji
- Kurahisisha maneno kwa kutumia Bidhaa kwa Mali ya Nguvu
- Kurahisisha maneno kwa kutumia mali kadhaa
- Kuzidisha monomials
Kabla ya kuanza, fanya jaribio hili la utayari.
- kurahisisha:\(\frac{3}{4}\cdot \frac{3}{4}\)
Kama amekosa tatizo hili, mapitio Zoezi 1.6.13. - Kurahisisha:\((−2)(−2)(−2)\).
Ikiwa umekosa tatizo hili, tathmini Zoezi 1.5.13.
Kurahisisha Maneno na Watazamaji
Kumbuka kwamba exponent inaonyesha kuzidisha mara kwa mara ya kiasi sawa. Kwa mfano,\(2^4\) ina maana ya bidhaa ya\(4\) mambo ya\(2\), hivyo\(2^4\) ina maana\(2·2·2·2\).
Hebu tuchunguze msamiati wa maneno na watazamaji.
Hii inasoma\(a\) kwa\(m^{th}\) nguvu.
Katika kujieleza\(a^{m}\), exponent\(m\) inatuambia mara ngapi sisi kutumia msingi a kama sababu.
Kabla ya kuanza kufanya kazi na maneno variable zenye exponents, hebu kurahisisha maneno machache kuwashirikisha idadi tu.
Kurahisisha:
- \(4^{3}\)
- \(7^{1}\)
- \(\left(\frac{5}{6}\right)^{2}\)
- \((0.63)^{2}\)
- Jibu
-
- \(\begin{array}{ll} & 4^{3}\\ {\text { Multiply three factors of } 4 .} & {4 \cdot 4 \cdot 4} \\ {\text { Simplify. }} & {64}\end{array}\)
- \(\begin{array}{ll} & 7^{1}\\ \text{Multiply one factor of 7.} & 7\end{array}\)
- \(\begin{array}{ll} &\left(\frac{5}{6}\right)^{2}\\ {\text { Multiply two factors. }} & {\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)} \\ {\text { Simplify. }} & {\frac{25}{36}}\end{array}\)
- \(\begin{array}{ll} &(0.63)^{2}\\ {\text { Multiply two factors. }} & {(0.63)(0.63)} \\ {\text { Simplify. }} & {0.3969}\end{array}\)
Kurahisisha:
- \(6^{3}\)
- \(15^{1}\)
- \(\left(\frac{3}{7}\right)^{2}\)
- \((0.43)^{2}\)
- Jibu
-
- 216
- 15
- \(\frac{9}{49}\)
- 0.1849
Kurahisisha:
- \(2^{5}\)
- \(21^{1}\)
- \(\left(\frac{2}{5}\right)^{3}\)
- \((0.218)^{2}\)
- Jibu
-
- 32
- 21
- \(\frac{8}{125}\)
- 0.047524
Kurahisisha:
- \((-5)^{4}\)
- \(-5^{4}\)
- Jibu
-
- \(\begin{array}{ll} &(-5)^{4}\\{\text { Multiply four factors of }-5} & {(-5)(-5)(-5)} \\ {\text { Simplify. }} & {625}\end{array}\)
- \(\begin{array}{ll} &-5^{4}\\{\text { Multiply four factors of } 5 .} & {-(5 \cdot 5 \cdot 5 \cdot 5)} \\ {\text { Simplify. }} & {-625}\end{array}\)
Angalia kufanana na tofauti katika Mfano\(\PageIndex{4}\) sehemu 1 na Mfano\(\PageIndex{4}\) sehemu 2! Kwa nini majibu ni tofauti? Kama sisi kufuata utaratibu wa shughuli katika sehemu ya 1 mabano kutuambia kuongeza\((−5)\) kwa 4 th nguvu. Katika sehemu ya 2 sisi kuongeza tu\(5\) kwa 4 th nguvu na kisha kuchukua kinyume.
Kurahisisha:
- \((-3)^{4}\)
- \(-3^{4}\)
- Jibu
-
- 81
- -81
Kurahisisha:
- \((-13)^{4}\)
- \(-13^{4}\)
- Jibu
-
- 169
- -169
Kurahisisha Maneno Kutumia Mali ya Bidhaa kwa Watazamaji
Umeona kwamba unapochanganya maneno kama hayo kwa kuongeza na kutoa, unahitaji kuwa na msingi sawa na kielelezo sawa. Lakini wakati wewe kuzidisha na kugawanya, exponents inaweza kuwa tofauti, na wakati mwingine besi inaweza kuwa tofauti, pia.
Tutaweza hupata mali ya exponents kwa kuangalia kwa mwelekeo katika mifano kadhaa.
Kwanza, tutaangalia mfano unaoongoza kwenye Mali ya Bidhaa.
Hii ina maana gani? Ni mambo ngapi kabisa? |
|
Hivyo, tuna | |
Kumbuka kwamba 5 ni jumla ya exponents, 2 na 3. |
Tunaandika:\[\begin{array}{c}{x^{2} \cdot x^{3}} \\ {x^{2+3}} \\ {x^{5}}\end{array}\]
Msingi ulikaa sawa na sisi aliongeza exponents. Hii inasababisha Bidhaa Mali kwa Exponents.
Kama\(a\) ni idadi halisi,\(m\) na\(n\) ni kuhesabu idadi, basi
\[a^{m} \cdot a^{n}=a^{m+n}\]
Ili kuzidisha na besi kama, ongeza vielelezo.
Mfano na namba husaidia kuthibitisha mali hii.
\[\begin{array}{rll} {2^3\cdot2^2} &\stackrel{?}{=} & 2^{2+3}\\ {4\cdot 8} &\stackrel{?}{=} & 2^{5} \\ {32} &=& 32\checkmark\end{array}\]
Kurahisisha:\(y^{5} \cdot y^{6}\)
- Jibu
-
Tumia mali ya bidhaa,\(a^{m} \cdot a^{n}=a^{m+n}\). Kurahisisha.
Kurahisisha:\(b^{9} \cdot b^{8}\)
- Jibu
-
\(b^{17}\)
Kurahisisha:\(x^{12} \cdot x^{4}\)
- Jibu
-
\(x^{16}\)
Kurahisisha:
- \(2^{5} \cdot 2^{9}\)
- \(3\cdot 3^{4}\)
- Jibu
-
a.
Tumia mali ya bidhaa,\(a^{m} \cdot a^{n}=a^{m+n}\). Kurahisisha. b.
Tumia mali ya bidhaa,\(a^{m} \cdot a^{n}=a^{m+n}\). Kurahisisha.
Kurahisisha:
- \(5\cdot 5^{5}\)
- \(4^{9} \cdot 4^{9}\)
- Jibu
-
- \(5^{6}\)
- \(4^{18}\)
Kurahisisha:
- \(7^{6} \cdot 7^{8}\)
- \(10 \cdot 10^{10}\)
- Jibu
-
- \(7^{14}\)
- \(10^{11}\)
Kurahisisha:
- \(a^{7} \cdot a\)
- \(x^{27} \cdot x^{13}\)
- Jibu
-
a.
Andika upya,\(a = a^1\) Tumia mali ya bidhaa,\(a^m\cdot a^n = a^{m+n}\). Kurahisisha. b.
Angalia, besi ni sawa, hivyo kuongeza exponents. Kurahisisha.
Kurahisisha:
- \(p^{5} \cdot p\)
- \(y^{14} \cdot y^{29}\)
- Jibu
-
- \(p^{6}\)
- \(y^{43}\)
Kurahisisha:
- \(z \cdot z^{7}\)
- \(b^{15} \cdot b^{34}\)
- Jibu
-
- \(z^{8}\)
- \(b^{49}\)
Tunaweza kupanua Bidhaa Mali kwa Exponents kwa sababu zaidi ya mbili.
Kurahisisha:\(d^{4} \cdot d^{5} \cdot d^{2}\)
- Jibu
-
Kuongeza exponents, tangu besi ni sawa. Kurahisisha.
Kurahisisha:\(x^{6} \cdot x^{4} \cdot x^{8}\)
- Jibu
-
\(x^{18}\)
Kurahisisha:\(b^{5} \cdot b^{9} \cdot b^{5}\)
- Jibu
-
\(b^{19}\)
Kurahisisha Maneno Kutumia Mali ya Nguvu kwa Wasanii
Sasa hebu tuangalie usemi wa kielelezo ambao una nguvu iliyoinuliwa kwa nguvu. Angalia kama unaweza kugundua mali ya jumla.
Hii ina maana gani? Ni mambo ngapi kabisa? |
|
Hivyo tuna | |
Kumbuka kwamba 6 ni bidhaa ya exponents, 2 na 3. |
Tunaandika:
\[\begin{array}{c}{\left(x^{2}\right)^{3}} \\ {x^{2 \cdot 3}} \\ {x^{6}}\end{array}\]
Sisi kuzidisha exponents. Hii inasababisha Power Mali kwa Exponents.
Ikiwa\(a\) ni idadi halisi,\(m\) na\(n\) ni namba nzima, basi
\[\left(a^{m}\right)^{n}=a^{m \cdot n}\]
Ili kuongeza nguvu kwa nguvu, kuzidisha wafuasi.
Mfano na namba husaidia kuthibitisha mali hii.
\[\begin{array} {lll} \left(3^{2}\right)^{3} &\stackrel{?}{=}&3^{2 \cdot 3} \\(9)^{3} &\stackrel{?}{=} & 3^{6} \\ 729 &=&729\checkmark \end{array}\]
Kurahisisha:
- \(\left(y^{5}\right)^{9}\)
- \(\left(4^{4}\right)^{7}\)
- Jibu
-
a.
Tumia mali ya nguvu,\(\big(a^m\big)^n = a^{m\cdot n}\). Kurahisisha. b.
Tumia mali ya nguvu. Kurahisisha.
Kurahisisha:
- \( \left(b^{7}\right)^{5} \)
- \(\left(5^{4}\right)^{3}\)
- Jibu
-
- \( b^{35}\)
- \(5^{12}\)
Kurahisisha:
- \(\left(z^{6}\right)^{9}\)
- \(\left(3^{7}\right)^{7}\)
- Jibu
-
- \(z^{54}\)
- \(3^{49}\)
Kurahisisha Maneno Kutumia Bidhaa kwa Mali ya Nguvu
Sasa tutaangalia maneno yaliyo na bidhaa inayofufuliwa kwa nguvu. Je, unaweza kupata ruwaza hii?
\(\begin{array}{ll}{\text { What does this mean? }} & {\text { (2x) }^{3}} \\ {\text { We group the like factors together. }} & {2 x \cdot 2 x \cdot 2 x} \\ {\text { How many factors of } 2 \text { and of } x ?} & {2 \cdot 2 \cdot x^{3}} \\ {\text { Notice that each factor was raised to the power and }(2 x)^{3} \text { is } 2^{3} \cdot x^{3}}\end{array}\)
\(\begin{array}{ll}\text{We write:} & {(2 x)^{3}} \\ & {2^{3} \cdot x^{3}}\end{array}\)
Mtazamo hutumika kwa kila sababu! Hii inasababisha Bidhaa kwa Power Mali kwa Exponents.
Kama\(a\) na\(b\) ni idadi halisi na\(m\) ni idadi nzima, basi
\[(a b)^{m}=a^{m} b^{m}\]
Ili kuongeza bidhaa kwa nguvu, ongeza kila sababu kwa nguvu hiyo.
Mfano na namba husaidia kuthibitisha mali hii:
\ [kuanza {safu} {lll} (2\ cdot 3) ^ {2} &\ stackrel {?} {=} &2 ^ {2}\ cdot 3^ {2}\ 6 ^ {2} &\ stackrel {?} {=} &4\ cdot 9\\ 36 &=&36
\ checkmark\ mwisho {array}\]
Kurahisisha:
- \((-9 d)^{2}\)
- \((3mn)^{3}\).
- Jibu
-
a.
Matumizi Nguvu ya Bidhaa Mali,\((ab)^m=a^m b^m\). Kurahisisha. Matumizi Nguvu ya Bidhaa Mali,\((ab)^m=a^m b^m\). Kurahisisha.
Kurahisisha:
- \((-12 y)^{2}\)
- \((2 w x)^{5}\)
- Jibu
-
- \(144y^{2}\)
- \(32w^{5} x^{5}\)
Kurahisisha:
- \((5 w x)^{3}\)
- \((-3 y)^{3}\)
- Jibu
-
- 125\(w^{3} x^{3}\)
- \(-27 y^{3}\)
Kurahisisha Maneno kwa kutumia Mali kadhaa
Sisi sasa kuwa na mali tatu kwa ajili ya kuzidisha maneno na exponents. Hebu muhtasari yao na kisha tutaweza kufanya baadhi ya mifano kwamba matumizi ya zaidi ya moja ya mali.
Ikiwa\(a\) na\(b\) ni namba halisi,\(m\) na\(n\) ni namba nzima, basi
\[\begin{array}{llll} \textbf{Product Property } & a^{m} \cdot a^{n}&=&a^{m+n} \\ \textbf {Power Property } &\left(a^{m}\right)^{n}&=&a^{m n} \\ \textbf {Product to a Power } &(a b)^{m}&=&a^{m} b^{m} \end{array}\]
Mali zote exponent kushikilia kweli kwa idadi yoyote halisi\(m\) na\(n\). Hivi sasa, sisi tu kutumia idadi nzima exponents.
Kurahisisha:
- \(\left(y^{3}\right)^{6}\left(y^{5}\right)^{4}\)
- \(\left(-6 x^{4} y^{5}\right)^{2}\)
- Jibu
-
- \(\begin{array}{ll}& \left(y^{3}\right)^{6}\left(y^{5}\right)^{4}\\ {\text { Use the Power Property. }}& y^{18} \cdot y^{20} \\ {\text { Add the exponents. }} & y^{38} \end{array}\)
- \(\begin{array}{ll}& \left(-6 x^{4} y^{5}\right)^{2}\\ {\text { Use the Product to a Power Property. }} & {(-6)^{2}\left(x^{4}\right)^{2}\left(y^{5}\right)^{2}} \\ {\text { Use the Power Property. }} & {(-6)^{2}\left(x^{8}\right)\left(y^{10}\right)^{2}} \\ {\text { Simplify. }} & {36 x^{8} y^{10}}\end{array}\)
Kurahisisha:
- \(\left(a^{4}\right)^{5}\left(a^{7}\right)^{4}\)
- \(\left(-2 c^{4} d^{2}\right)^{3}\)
- Jibu
-
- \(a^{48}\)
- \(-8 c^{12} d^{6}\)
Kurahisisha:
- \(\left(-3 x^{6} y^{7}\right)^{4}\)
- \(\left(q^{4}\right)^{5}\left(q^{3}\right)^{3}\)
- Jibu
-
- 81\(x^{24} y^{28}\)
- \(q^{29}\)
Kurahisisha:
- \((5 m)^{2}\left(3 m^{3}\right)\)
- \(\left(3 x^{2} y\right)^{4}\left(2 x y^{2}\right)^{3}\)
- Jibu
-
- \(\begin{array}{ll}& (5 m)^{2}\left(3 m^{3}\right)\\{\text { Raise } 5 m \text { to the second power. }} & {5^{2} m^{2} \cdot 3 m^{3}} \\ {\text { Simplify. }} & {25 m^{2} \cdot 3 m^{3}} \\ {\text { Use the Commutative Property. }} & {25 \cdot 3 \cdot m^{2} \cdot m^{3}} \\ {\text { Multiply the constants and add the exponents. }} & {75 m^{5}}\end{array}\)
- \(\begin{array}{ll} & \left(3 x^{2} y\right)^{4}\left(2 x y^{2}\right)^{3} \\ \text{Use the Product to a Power Property.} & \left(3^{4} x^{8} y^{4}\right)\left(2^{3} x^{3} y^{6}\right)\\\text{Simplify.} & \left(81 x^{8} y^{4}\right)\left(8 x^{3} y^{6}\right)\\ \text{Use the Commutative Property.} &81\cdot 8 \cdot x^{8} \cdot x^{3} \cdot y^{4} \cdot y^{6} \\\text{Multiply the constants and add the exponents.} & 648x^{11} y^{10}\\ \end{array}\)
Kurahisisha:
- \((5 n)^{2}\left(3 n^{10}\right)\)
- \(\left(c^{4} d^{2}\right)^{5}\left(3 c d^{5}\right)^{4}\)
- Jibu
-
- 75\(n^{12}\)
- 81\(c^{24} d^{30}\)
Kurahisisha:
- \(\left(a^{3} b^{2}\right)^{6}\left(4 a b^{3}\right)^{4}\)
- \((2 x)^{3}\left(5 x^{7}\right)\)
- Jibu
-
- 256\(a^{22} b^{24}\)
- 40\(x^{10}\)
Kuzidisha Monomials
Kwa kuwa monomial ni kujieleza algebraic, tunaweza kutumia mali ya exponents kuzidisha monomials.
Kuzidisha:\(\left(3 x^{2}\right)\left(-4 x^{3}\right)\)
- Jibu
-
\ (\ kuanza {safu} {ll} &\ kushoto (3 x ^ {2}\ kulia)\ kushoto (-4 x^ {3}\ kulia)\\ Nakala {Tumia Mali ya Kubadilisha upya masharti.} & 3\ cdot (-4)\ cdot x ^ {2}\ cdot x ^ {3}\
\ maandishi {Kuzidisha.} & -12 x^ {5}\ mwisho {safu}\)
Kuzidisha:\(\left(5 y^{7}\right)\left(-7 y^{4}\right)\)
- Jibu
-
\(-35 y^{11}\)
Kuzidisha:\(\left(-6 b^{4}\right)\left(-9 b^{5}\right)\)
- Jibu
-
54\(b^{9}\)
Kuzidisha:\(\left(\frac{5}{6} x^{3} y\right)\left(12 x y^{2}\right)\)
- Jibu
-
\(\begin{array}{ll} & \left(\frac{5}{6} x^{3} y\right)\left(12 x y^{2}\right)\\ \text{Use the Commutative Property to rearrange the terms.} & \frac{5}{6} \cdot 12 \cdot x^{3} \cdot x \cdot y \cdot y^{2}\\ \text{Multiply.} &10x^{4} y^{3}\end{array}\)
Kuzidisha:\(\left(\frac{2}{5} a^{4} b^{3}\right)\left(15 a b^{3}\right)\)
- Jibu
-
6\(a^{5} b^{6}\)
Kuzidisha:\(\left(\frac{2}{3} r^{5} s\right)\left(12 r^{6} s^{7}\right)\)
- Jibu
-
8\(r^{11} s^{8}\)
Kupata rasilimali hizi online kwa maelekezo ya ziada na mazoezi kwa kutumia mali kuzidisha ya exponents:
- Kuzidisha Mali ya Watazamaji
Dhana muhimu
- Nukuu ya kielelezo
- Mali ya Watazamaji
- Ikiwa\(a\) na\(b\) ni namba halisi\(m\) na\(n\) ni namba nzima, basi
\[\begin{array}{llll} \textbf{Product Property } & a^{m} \cdot a^{n}&=&a^{m+n} \\ \textbf {Power Property } &\left(a^{m}\right)^{n}&=&a^{m n} \\ \textbf {Product to a Power } &(a b)^{m}&=&a^{m} b^{m} \end{array}\]