15: Ushirikiano Mingi
- Page ID
- 178701
Katika sura hii sisi kupanua dhana ya muhimu ya uhakika wa variable moja kwa integrals mara mbili na tatu ya kazi ya vigezo mbili na tatu, kwa mtiririko huo. Sisi kuchunguza maombi kuwashirikisha ushirikiano kukokotoa kiasi, raia, na centroids ya mikoa zaidi ya jumla. Tutaona pia jinsi matumizi ya mifumo mingine ya kuratibu (kama vile polar, cylindrical, na kuratibu spherical) inafanya kuwa rahisi kukokotoa integrals nyingi juu ya baadhi ya aina ya mikoa na kazi. Katika sura iliyotangulia, tulijadili calculus tofauti na vigezo vingi vya kujitegemea. Sasa tunachunguza calculus muhimu katika vipimo vingi. Kama vile derivative sehemu inaruhusu sisi kutofautisha kazi kwa heshima na variable moja wakati kufanya vigezo vingine mara kwa mara, tutaona kwamba muhimu iterated inaruhusu sisi kuunganisha kazi kwa heshima na variable moja wakati kufanya vigezo vingine mara kwa mara.
- 15.0: Utangulizi wa Ushirikiano Multiple
- Katika sura iliyotangulia, tulijadili calculus tofauti na vigezo vingi vya kujitegemea. Sasa tunachunguza calculus muhimu katika vipimo vingi. Kama vile derivative sehemu inaruhusu sisi kutofautisha kazi kwa heshima na variable moja wakati kufanya vigezo vingine mara kwa mara, tutaona kwamba muhimu iterated inaruhusu sisi kuunganisha kazi kwa heshima na variable moja wakati kufanya vigezo vingine mara kwa mara.
- 15.1: Integrals mara mbili juu ya Mikoa Rectangular
- Katika sehemu hii sisi kuchunguza integrals mara mbili na kuonyesha jinsi tunaweza kuzitumia kupata kiasi cha imara juu ya mkoa mstatili katika xyxy-ndege. Wengi wa mali ya integrals mara mbili ni sawa na wale ambao tayari kujadiliwa kwa integrals moja.
- 15.2: Ushirikiano wa mara mbili juu ya Mikoa ya Mkuu
- Katika sehemu hii tunaona integrals mara mbili ya kazi defined juu ya jumla imepakana mkoa D kwenye ndege. Matokeo mengi ya awali yanashikilia hali hii pia, lakini baadhi ya mbinu zinahitajika kupanuliwa ili kufikia kesi hii ya jumla zaidi.
- 15.3: Integrals mara mbili katika Kuratibu Polar
- Mara mbili integrals wakati mwingine ni rahisi sana kutathmini kama sisi kubadilisha kuratibu mstatili kwa kuratibu polar. Hata hivyo, kabla ya kuelezea jinsi ya kufanya mabadiliko haya, tunahitaji kuanzisha dhana ya mara mbili muhimu katika mkoa wa polar mstatili.
- 15.4: Integrals Triple
- Katika Double Integrals juu ya Mikoa Rectangular, sisi kujadiliwa muhimu mara mbili ya kazi f (x, y) ya vigezo mbili juu ya mkoa mstatili katika ndege. Katika sehemu hii tunafafanua muhimu mara tatu ya kazi f (x, y, z) ya vigezo vitatu juu ya sanduku imara mstatili katika nafasi, R³. Baadaye katika sehemu hii tunapanua ufafanuzi kwa mikoa zaidi ya jumla katika R³.
- 15.5: Integrals tatu katika Cylindrical na Spherical Kuratibu
- Katika sehemu hii sisi kubadilisha integrals tatu katika kuratibu mstatili katika tatu muhimu katika ama cylindrical au spherical kuratibu.
- 15.6: Kuhesabu Vituo vya Misa na Moments ya Inertia
- Katika sehemu hii sisi kuendeleza mbinu computational kwa ajili ya kupata kituo cha wingi na wakati wa hali ya aina kadhaa ya vitu kimwili, kwa kutumia integrals mara mbili kwa lamina (gorofa sahani) na integrals tatu kwa ajili ya kitu tatu-dimensional na wiani kutofautiana. Uzito kawaida huchukuliwa kuwa namba ya mara kwa mara wakati lamina au kitu ni sawa; yaani, kitu kina wiani sare.
- 15.7: Mabadiliko ya Vigezo katika Integrals nyingi
- Wakati wa kutatua matatizo ya ushirikiano, tunafanya mbadala sahihi ili kupata muhimu ambayo inakuwa rahisi zaidi kuliko muhimu ya awali. Sisi pia kutumika wazo hili wakati sisi kubadilishwa integrals mara mbili katika kuratibu mstatili kwa kuratibu polar na kubadilishwa integrals mara tatu katika kuratibu mstatili kwa cylindrical au spherical kuratibu kufanya hesabu rahisi.
Thumbnail: Double muhimu kama kiasi chini ya uso\(z = 10 − x^2 − y^2/8\). Mkoa wa mstatili chini ya mwili ni uwanja wa ushirikiano, wakati uso ni grafu ya kazi mbili za kutofautiana ili kuunganishwa. (Umma Domain; Oleg Alexandrov).