Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Skip to main content
Library homepage
 
Global

15.7: Mabadiliko ya Vigezo katika Integrals nyingi

  • Edwin “Jed” Herman & Gilbert Strang
  • OpenStax

Malengo ya kujifunza
  • Kuamua picha ya kanda chini ya mabadiliko fulani ya vigezo.
  • Compute Jacobian ya mabadiliko kutokana.
  • Kutathmini muhimu mara mbili kwa kutumia mabadiliko ya vigezo.
  • Kutathmini muhimu mara tatu kwa kutumia mabadiliko ya vigezo.

Kumbuka kutoka Utawala wa Kubadilisha njia ya ushirikiano na kubadilisha. Wakati wa kutathmini muhimu kama vile

32x(x24)5dx,

sisi badalau=g(x)=x24. Kishadu=2xdx auxdx=12du mipaka inabadilikau=g(2)=224=0 nau=g(3)=94=5. Hivyo muhimu inakuwa

5012u5du

na hii muhimu ni rahisi sana kutathmini. Kwa maneno mengine, wakati wa kutatua matatizo ya ushirikiano, tunafanya mbadala zinazofaa ili kupata muhimu ambayo inakuwa rahisi zaidi kuliko muhimu ya awali.

Sisi pia kutumika wazo hili wakati sisi kubadilishwa integrals mara mbili katika kuratibu mstatili kwa kuratibu polar na kubadilishwa integrals mara tatu katika kuratibu mstatili kwa cylindrical au spherical kuratibu kufanya hesabu rahisi. Kwa ujumla zaidi,

baf(x)dx=dcf(g(u))g(u)du,

wapix=g(u),dx=g(u)du, nau=c nau=d kukidhic=g(a) nad=g(b).

Matokeo sawa hutokea katika integrals mara mbili wakati sisi mbadala

  • x=f(r,θ)=rcosθ
  • y=g(r,θ)=rsinθ, na
  • dA=dxdy=rdrdθ.

Kisha sisi kupata

ambapo uwanjaR ni kubadilishwa na uwanjaS katika kuratibu polar. Kwa ujumla, kazi ambayo sisi kutumia mabadiliko ya vigezo kufanya ushirikiano rahisi inaitwa mabadiliko au ramani.

Mabadiliko ya Planar

Mabadiliko ya planarT ni kazi inayobadilisha kandaG katika ndege moja kuwa kandaR katika ndege nyingine kwa mabadiliko ya vigezo. WoteG naR ni subsets yaR^2. Kwa mfano, Kielelezo\PageIndex{1} inaonyesha kandaG katikauv -ndege kubadilishwa katika kandaR katikaxy -ndege na mabadiliko ya vigezox = g(u,v) nay = h(u,v), au wakati mwingine sisi kuandikax = x(u,v) nay = y(u,v). Sisi kawaida kudhani kwamba kila moja ya kazi hizi ina kuendelea kwanza sehemu derivatives, ambayo ina maanag_u, \, g_v, \, h_u, nah_v kuwepo na pia ni kuendelea. Mahitaji ya mahitaji haya yatakuwa wazi hivi karibuni.

Kwenye upande wa kushoto wa takwimu hii, kuna eneo G na uhakika (u, v) iliyotolewa katika Cartesian u v-ndege. Kisha kuna mshale kutoka kwenye grafu hii hadi upande wa kulia wa takwimu iliyowekwa na x = g (u, v) na y = h (u, v). Kwenye upande wa kulia wa takwimu hii kuna kanda R na uhakika (x, y) iliyotolewa katika XY- ndege ya Cartesian.
Kielelezo\PageIndex{1}: Mabadiliko ya kandaG katikauv -ndege katika kandaR katikaxy -ndege.
Ufafanuzi: mabadiliko moja kwa moja

MabadilikoT: \, G \rightarrow R, hufafanuliwa kamaT(u,v) = (x,y), inasemekana kuwa mabadiliko ya moja kwa moja ikiwa hakuna ramani ya pointi mbili kwenye hatua sawa ya picha.

Kuonyesha kwambaT s mabadiliko moja kwa moja, sisi kudhaniT(u_1,v_1) = T(u_2, v_2) na kuonyesha kwamba kama matokeo sisi kupata(u_1,v_1) = (u_2, v_2). Ikiwa mabadilikoT ni moja kwa moja katika kikoaG, basi inverseT^{-1} ipo na kikoaR kama hichoT^{-1} \circ T naT \circ T^{-1} ni kazi za utambulisho.

Kielelezo\PageIndex{2} inaonyesha ramaniT(u,v) = (x,y) wapix nay ni kuhusianau na nav kwa equationsx = g(u,v) nay = h(u,v). MkoaG ni uwanja waT na kandaR ni mbalimbali yaT, pia inajulikana kama picha yaG chini ya mabadilikoT.

Mfano\PageIndex{1A}: Determining How the Transformation Works

Tuseme mabadilikoT hufafanuliwa kamaT(r,\theta) = (x,y) ambapox = r \, \cos \, \theta, \, y = r \, \sin \, \theta. Pata picha ya mstatili wa polarG = \{(r,\theta) | 0 \leq r \leq 1, \, 0 \leq \theta \leq \pi/2\} katikar\theta -ndege hadi kandaR katikaxy -ndege. Onyesha kwambaT ni mabadiliko moja kwa moja katikaG na kupataT^{-1} (x,y).

Suluhisho

Kwa kuwar inatofautiana kutoka 0 hadi 1 katikar\theta -ndege, tuna diski ya mviringo ya radius 0 kwa 1 katikaxy -plane. Kwa sababu\theta inatofautiana kutoka 0 hadi\pi/2 kwenyer\theta ndege, tunaishia kupata mduara wa robo ya radius1 katika roboduara ya kwanza yaxy -plane (Kielelezo\PageIndex{2}). HivyoR ni mduara wa robo umepakana nax^2 + y^2 = 1 katika roboduara ya kwanza.

Kwenye upande wa kushoto wa takwimu hii, kuna mstatili G na subrectangle alama iliyotolewa katika roboduara ya kwanza ya Cartesian r Theta-ndege. Kisha kuna mshale kutoka kwenye grafu hii hadi upande wa kulia wa takwimu iliyowekwa na x = r cos theta na y = r dhambi theta. Kwenye upande wa kulia wa takwimu hii kuna mduara wa robo R na subannulus iliyowekwa alama (sawa na mstatili katika grafu nyingine) iliyotolewa katika ndege ya Cartesian x y.
Kielelezo\PageIndex{2}: Mstatili katikar\theta -ndege ni mapped katika mduara robo katikaxy -ndege.

Ili kuonyesha kwambaT ni mabadiliko moja kwa moja, kudhaniT(r_1,\theta_1) = T(r_2, \theta_2) na kuonyesha kama matokeo kwamba(r_1,\theta_1) = (r_2, \theta_2). Katika kesi hiyo, tuna

T(r_1,\theta_1) = T(r_2, \theta_2), \nonumber

(x_1,y_1) = (x_1,y_1), \nonumber

(r_1 \cos \, \theta_1, r_1 \sin \, \theta_1) = (r_2 \cos \, \theta_2, r_2 \sin \, \theta_2), \nonumber

r_1 \cos \, \theta_1 = r_2 \cos \, \theta_2, \, r_1 \sin \, \theta_1 = r_2 \sin \, \theta_2. \nonumber

Kugawanya, tunapata

\frac{r_1 \cos \, \theta_1}{r_1 \sin \, \theta_1} = \frac{ r_2 \cos \, \theta_2}{ r_2 \sin \, \theta_2} \nonumber

\frac{\cos \, \theta_1}{\sin \, \theta_1} = \frac{\cos \, \theta_2}{\sin \, \theta_2} \nonumber

\tan \, \theta_1 = \tan \, \theta_2 \nonumber

\theta_1 = \theta_2 \nonumber

tangu kazi ya tangent ni kazi moja kwa moja katika kipindi0 \leq \theta \leq \pi/2. Pia, tangu0 \leq r \leq 1, tunar_1 = r_2, \, \theta_1 = \theta_2. Kwa hiyo,(r_1,\theta_1) = (r_2, \theta_2) naT ni mabadiliko moja kwa moja kutokaG kwaR.

Ili kupataT^{-1}(x,y) kutatuar,\theta kwa suala lax,y. Tayari tunajua kwambar^2 = x^2 + y^2 na\tan \, \theta = \frac{y}{x}. HivyoT^{-1}(x,y) = (r,\theta) hufafanuliwa kamar = \sqrt{x^2 + y^2} na\tan^{-1} \left(\frac{y}{x}\right).

Mfano\PageIndex{1B}: Finding the Image under T

Hebu mabadilikoT yaelezwe naT(u,v) = (x,y) wapix = u^2 - v^2 nay = uv. Pata picha ya pembetatuuv katika-ndege yenye vipeo(0,0), \, (0,1), na(1,1).

Suluhisho

Pembetatu na picha yake zinaonyeshwa kwenye Kielelezo\PageIndex{3}. Ili kuelewa jinsi pande za pembetatu zinavyobadilika, piga upande unaojiunga(0,0) na(0,1) upandeA, upande unaojiunga(0,0) na(1,1) upandeB, na upande unaojiunga(1,1) na(0,1) upandeC.

Kwenye upande wa kushoto wa takwimu hii, kuna mkoa wa triangular uliotolewa katika ndege ya UV ya Cartesian yenye mipaka A, B, na C inayowakilishwa na mhimili wa v, mstari u = v, na mstari v = 1, kwa mtiririko huo. Kisha kuna mshale kutoka kwenye grafu hii hadi upande wa kulia wa takwimu iliyowekwa na x = u squared bala v squared na y = u v. upande wa kulia wa takwimu hii kuna eneo tata iliyotolewa katika Cartesian x y-ndege na mipaka A', B ', na C' iliyotolewa na mhimili x, y mhimili, na mstari unaozunguka kutoka ( hasi 1, 0) kupitia (0, 1), yaani x = y mraba minus 1, kwa mtiririko huo.
Kielelezo\PageIndex{3}: Mkoa wa triangular katikauv -ndege hubadilishwa kuwa picha katikaxy -ndege.
  • Kwa upandeA: \, u = 0, \, 0 \leq v \leq 1 hubadilishax = -v^2, \, y = 0 hivyo hii ni upandeA' unaojiunga(-1,0) na(0,0).
  • Kwa upandeB: \, u = v, \, 0 \leq u \leq 1 hubadilishax = 0, \, y = u^2 hivyo hii ni upandeB' unaojiunga(0,0) na(0,1).
  • Kwa upandeC: \, 0 \leq u \leq 1, \, v = 1 inabadilishax = u^2 - 1, \, y = u (hivyox = y^2 - 1 hivyo hii ni upandeC' ambayo inafanya nusu ya juu ya safu parabolic kujiunga(-1,0) na(0,1).

Vipengele vyote katika kanda nzima ya pembetatu katikauv -ndege hupangwa ndani ya kanda ya parabolic katikaxy -plane.

Zoezi\PageIndex{1}

Hebu mabadilikoT kuelezwa kamaT(u,v) = (x,y) ambapox = u + v, \, y = 3v. Pata picha ya mstatiliG = \{(u,v) : \, 0 \leq u \leq 1, \, 0 \leq v \leq 2\} kutokauv -ndege baada ya mabadiliko katika kandaR katikaxy -ndege. Onyesha kwambaT ni mabadiliko moja kwa moja na kupataT^{-1} (x,y).

Kidokezo

Fuata hatua za Mfano\PageIndex{1B}.

Jibu

T^{-1} (x,y) = (u,v)wapiu = \frac{3x-y}{3} nav = \frac{y}{3}

Wajacobia

Kumbuka kwamba tulielezea karibu na mwanzo wa sehemu hii kwamba kila kazi ya sehemu lazima iwe na derivatives ya kwanza ya sehemu, ambayo ina maana kwambag_u, g_v, h_u nah_v kuwepo na pia inaendelea. Mabadiliko ambayo ina mali hii inaitwaC^1 mabadiliko (hapaC inaashiria kuendelea). HebuT(u,v) = (g(u,v), \, h(u,v)), wapix = g(u,v) nay = h(u,v) uweC^1 mabadiliko ya moja kwa moja. Tunataka kuona jinsi inabadilisha vitengo vidogoS, \, \Delta u vya mkoa wa mstatili na\Delta v vitengo, katikauv -ndege (Kielelezo\PageIndex{4}).

Kwenye upande wa kushoto wa takwimu hii, kuna eneo S na chini kulia kona uhakika (u ndogo 0, v ndogo 0), urefu Delta v, na urefu Delta u kutolewa katika Cartesian u v-ndege. Kisha kuna mshale kutoka kwenye grafu hii hadi upande wa kulia wa takwimu iliyowekwa na T. upande wa kulia wa takwimu hii kuna kanda R na uhakika (x ndogo 0, y ndogo 0) iliyotolewa katika Cartesian x y-ndege na pande r (u, v ndogo 0) pamoja chini na r (u ndogo 0, v) upande wa kushoto.
Kielelezo\PageIndex{4}: Mstatili mdogoS katikauv -ndege hubadilishwa kuwa kandaR katikaxy -ndege.

Tangux = g(u,v) nay = h(u,v), tuna vector nafasir(u,v) = g(u,v)i + h(u,v)j ya picha ya uhakika(u,v). Tuseme kwamba(u_0,v_0) ni kuratibu ya uhakika katika kona ya chini kushoto kwamba mapped kwa(x_0,y_0) = T(u_0,v_0)v = v_0 ramani line Curve picha na kazi vectorr(u,v_0), na vector tangent katika(x_0,y_0) Curve picha ni

r_u = g_u (u_0,v_0)i + h_v (u_0,v_0)j = \frac{\partial x}{\partial u}i + \frac{\partial y}{\partial u}j. \nonumber

Vile vile,u = u_0 ramani za mstari kwenye safu ya picha na kazi ya vectorr(u_0,v), na vector ya tangent(x_0,y_0) kwenye pembe ya picha ni

r_v = g_v (u_0,v_0)i + h_u (u_0,v_0)j = \frac{\partial x}{\partial v}i + \frac{\partial y}{\partial v}j. \nonumber

Sasa, kumbuka kuwa

r_u = \lim_{\Delta u \rightarrow 0} \frac{r (u_0 + \Delta u, v_0) - r ( u_0,v_0)}{\Delta u}\, so \, r (u_0 + \Delta u,v_0) - r(u_0,v_0) \approx \Delta u r_u. \nonumber

Vile vile,

r_v = \lim_{\Delta v \rightarrow 0} \frac{r (u_0,v_0 + \Delta v) - r ( u_0,v_0)}{\Delta v}\, so \, r (u_0,v_0 + \Delta v) - r(u_0,v_0) \approx \Delta v r_v. \nonumber

Hii inaruhusu sisi kukadiria eneo\Delta A la pichaR kwa kutafuta eneo la parallelogram iliyoundwa\Delta vr_v na pande na\Delta ur_u. Kwa kutumia bidhaa msalaba wa wadudu hawa wawili kwa kuongeza k th sehemu kama0, eneo\Delta A la pichaR (rejea Msalaba Bidhaa) ni takriban|\Delta ur_u \times \Delta v r_v| = |r_u \times r_v|\Delta u \Delta v. Katika fomu ya kuamua, bidhaa ya msalaba ni

r_u \times r_v = \begin{vmatrix} i & j & k \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & 0 \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & 0 \end{vmatrix} = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial y}{\partial u} \\ \dfrac{\partial x}{\partial v} & \dfrac{\partial y}{\partial v} \end{vmatrix} k = \left(\frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}\right)k \nonumber

Tangu|k| = 1, tuna

\Delta A \approx |r_u \times r_v| \Delta u \Delta v = \left( \frac{\partial x}{\partial u}\frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}\right) \Delta u \Delta v.

ufafanuzi: Jacobian

Jacobian yaC^1 mabadilikoT(u,v) = (g(u,v), \, h(u,v)) inaashiriaJ(u,v) na inaelezwa na2 \times 2 kuamua

J(u,v) = \left|\frac{\partial (x,y)}{\partial (u,v)} \right| = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial y}{\partial u} \\ \dfrac{\partial x}{\partial v} & \dfrac{\partial y}{\partial v} \end{vmatrix} = \left( \frac{\partial x}{\partial u}\frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}\right). \nonumber

Kutumia ufafanuzi, tuna

\Delta A \approx J(u,v) \Delta u \Delta v = \left|\frac{\partial (x,y)}{\partial (u,v)}\right| \Delta u \Delta v. \nonumber

Kumbuka kuwa Jacobian mara nyingi inaashiria tu kwa

J(u,v) = \frac{\partial (x,y)}{\partial (u,v)}. \nonumber

Kumbuka pia kwamba

\begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial y}{\partial u} \nonumber \\ \dfrac{\partial x}{\partial v} & \dfrac{\partial y}{\partial v} \end{vmatrix} = \left( \frac{\partial x}{\partial u}\frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}\right) = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} \nonumber \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} \end{vmatrix} . \nonumber

Hivyo nukuuJ(u,v) = \frac{\partial(x,y)}{\partial(u,v)} unaonyesha kwamba tunaweza kuandika uamuzi wa Jacobian na sehemu zax mstari wa kwanza na sehemu zay mstari wa pili.

Mfano\PageIndex{2A}: Finding the Jacobian

Kupata Jacobian ya mabadiliko aliyopewa katika Mfano\PageIndex{1A}.

Suluhisho

Mabadiliko katika mfano niT(r,\theta) = ( r \, \cos \, \theta, \, r \, \sin \, \theta) wapix = r \, \cos \, \theta nay = r \, \sin \, \theta. Hivyo Jacobian ni

J(r, \theta) = \frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \dfrac{\partial x}{\partial r} & \dfrac{\partial x}{\partial \theta} \\ \dfrac{\partial y}{\partial r} & \dfrac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos \theta & -r\sin \theta \\ \sin \theta & r\cos\theta \end{vmatrix} = r \, \cos^2\theta + r \, \sin^2\theta = r ( \cos^2\theta + \sin^2\theta) = r. \nonumber

Mfano\PageIndex{2B}: Finding the Jacobian

Kupata Jacobian ya mabadiliko aliyopewa katika Mfano\PageIndex{1B}.

Suluhisho

Mabadiliko katika mfano niT(u,v) = (u^2 - v^2, uv) wapix = u^2 - v^2 nay = uv. Hivyo Jacobian ni

J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 2u & -2v \\ v & u \end{vmatrix} = 2u^2 + 2v^2. \nonumber

Zoezi\PageIndex{2}

Kupata Jacobian ya mabadiliko aliyopewa katika checkpoint uliopita:T(u,v) = (u + v, 2v).

Kidokezo

Fuata hatua katika mifano miwili iliyopita.

Jibu

J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} \nonumber \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 1 & 1 \nonumber \\ 0 & 2 \end{vmatrix} = 2 \nonumber

Mabadiliko ya Vigezo kwa Integrals Double

Tumeona kwamba, chini ya mabadiliko ya vigezoT(u,v) = (x,y) ambapox = g(u,v) nay = h(u,v), kanda ndogo\Delta A katikaxy -ndege ni kuhusiana na eneo lililoundwa na bidhaa\Delta u \Delta v katikauv -ndege na makadirio

\Delta A \approx J(u,v) \Delta u, \, \Delta v. \nonumber

Sasa hebu kurudi kwenye ufafanuzi wa mara mbili muhimu kwa dakika:

\iint_R f(x,y)fA = \lim_{m,n \rightarrow \infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}, y_{ij}) \Delta A. \nonumber

Akizungumzia Kielelezo\PageIndex{5}, angalia kwamba tumegawanyika kandaS katikauv -plane ndani ya subrectangles ndogoS_{ij} na tunaruhusu subrectanglesR_{ij} katikaxy -plane kuwa picha zaS_{ij} chini ya mabadilikoT(u,v) = (x,y).

Kwenye upande wa kushoto wa takwimu hii, kuna mstatili S na andikwa nyekundu mviringo na subrectangle na chini kulia kona uhakika (u ndogo ij, v ndogo ij), urefu Delta v, na urefu Delta u kutolewa katika Cartesian u v-ndege. Kisha kuna mshale kutoka kwenye grafu hii hadi upande wa kulia wa takwimu iliyowekwa na T. upande wa kulia wa takwimu hii kuna kanda R na iliyoandikwa (deformed) nyekundu mviringo na subrectangle R ndogo ij na kona uhakika (x ndogo ij, y ndogo ij) iliyotolewa katika Cartesian x y-ndege. Subrectangle inapigwa na kuonyeshwa na vectors akizungumzia kando kutoka kwenye kona ya kona.
Kielelezo\PageIndex{5}: SubrectanglesS_{ij} katikauv -plane kubadilisha katika subrectanglesR_{ij} katikaxy -plane.

Kisha muhimu mara mbili inakuwa

\iint_R = f(x,y)dA = \lim_{m,n \rightarrow \infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}, y_{ij}) \Delta A = \lim_{m,n \rightarrow \infty} \sum_{i=1}^m \sum_{j=1}^n f(g(u_{ij}, v_{ij}), \, h(u_{ij}, v_{ij})) | J(u_{ij}, v_{ij})| \Delta u \Delta v. \nonumber

Taarifa hii ni hasa mara mbili Riemann jumla kwa muhimu

\iint_S f(g(u,v), \, h(u,v)) \left|\frac{\partial (x,y)}{\partial(u,v)}\right| du \, dv. \nonumber

Mabadiliko ya Vigezo kwa Integrals Double

HebuT(u,v) = (x,y) wapix = g(u,v) nay = h(u,v) kuwaC^1 mabadiliko moja kwa moja, na Nonzero Jacobian juu ya mambo ya ndani ya kandaS katikauv -ndege ni ramaniSR katika kanda katikaxy -ndege. Ikiwaf ni kuendeleaR, basi

\iint_R f(x,y) dA = \iint_S f(g(u,v), \, h(u,v)) \left|\frac{\partial (x,y)}{\partial(u,v)}\right| du \, dv. \nonumber

Pamoja na theorem hii kwa integrals mara mbili, tunaweza kubadilisha vigezo kutoka(x,y) kwa(u,v) katika muhimu mara mbili tu kwa kuchukua nafasi

dA = dx \, dy = \left|\frac{\partial (x,y)}{\partial (u,v)} \right| du \, dv \nonumber

wakati sisi kutumia substitutionsx = g(u,v)y = h(u,v) na kisha mabadiliko ya mipaka ya ushirikiano ipasavyo. Mabadiliko haya ya vigezo mara nyingi hufanya computations yoyote rahisi zaidi.

Mfano\PageIndex{3}: Changing Variables from Rectangular to Polar Coordinates

Fikiria muhimu

\int_0^2 \int_0^{\sqrt{2x-x^2}} \sqrt{x^2 + y^2} dy \, dx. \nonumber

Matumizi ya mabadiliko ya vigezox = r \, \cos \, \theta nay = r \, \sin \, \theta, na kupata muhimu kusababisha.

Suluhisho

Kwanza tunahitaji kupata eneo la ushirikiano. Mkoa huu umepakana chiniy = 0 na juu nay = \sqrt{2x - x^2} (Kielelezo\PageIndex{6}).

Semicircle katika quadrant ya kwanza ya ndege xy na radius 1 na kituo (1, 0). equation kwa Curve hii ni kutolewa kama y = mizizi mraba ya (2x minus x squared)
Kielelezo\PageIndex{6}: Kubadilisha kanda kutoka kwa mstatili hadi kuratibu polar.

Kusambaza na kukusanya maneno, tunaona kwamba kanda ni nusu ya juu ya mduarax^2 + y^2 - 2x = 0, yaaniy^2 + ( x - 1)^2 = 1. Katika kuratibu polar, mduara nir = 2 \, cos \, \theta hivyo eneo la ushirikiano katika kuratibu polar imefungwa0 \leq r \leq \cos \, \theta na0 \leq \theta \leq \frac{\pi}{2}.

Jacobian niJ(r, \theta) = r, kama inavyoonekana katika Mfano\PageIndex{2A}. tangur \geq 0, tuna|J(r,\theta)| = r.

Integrand\sqrt{x^2 + y^2} mabadilikor katika kuratibu polar, hivyo mara mbili iterated muhimu ni

\int_0^2 \int_0^{\sqrt{2x-x^2}} \sqrt{x^2 + y^2} dy \, dx = \int_0^{\pi/2} \int_0^{2 \, cos \, \theta} r | j(r, \theta)|dr \, d\theta = \int_0^{\pi/2} \int_0^{2 \, cos \, \theta} r^2 dr \, d\theta. \nonumber

Zoezi\PageIndex{3}

Kuzingatia\int_0^1 \int_0^{\sqrt{1-x^2}} (x^2 + y^2) dy \, dx, matumizi muhimu mabadiliko ya vigezox = r \, cos \, \thetay = r \, sin \, \theta na kupata matokeo muhimu.

Kidokezo

Fuata hatua katika mfano uliopita.

Jibu

\int_0^{\pi/2} \int_0^1 r^3 dr \, d\theta \nonumber

Angalia katika mfano unaofuata kwamba eneo ambalo tutaunganisha linaweza kupendekeza mabadiliko ya kufaa kwa ushirikiano. Hii ni hali ya kawaida na muhimu.

Mfano\PageIndex{4}: Changing Variables

Fikiria muhimu\iint_R (x - y) dy \, dx, \nonumber ambapoR parallelogram inajiunga na pointi(1,2), \, (3,4), \, (4,3), na(6,5) (Kielelezo\PageIndex{7}). Kufanya mabadiliko sahihi ya vigezo, na kuandika muhimu kusababisha.

Parallelogram R na pembe (1, 2), (3, 4), (6, 5), na (4, 3).
Kielelezo\PageIndex{7}: kanda ya ushirikiano kwa ajili ya muhimu kutokana.

Suluhisho

Kwanza, tunahitaji kuelewa eneo ambalo tunapaswa kuunganisha. Pande za parallelogram nix - y + 1, \, x - y - 1 = 0, \, x - 3y + 5 = 0 nax - 3y + 9 = 0 (Kielelezo\PageIndex{8}). Njia nyingine ya kuwaangalia nix - y = -1, \, x - y = 1, \, x - 3y = -5, nax - 3y = 9.

Wazi parallelogram imefungwa na mistariy = x + 1, \, y = x - 1, \, y = \frac{1}{3}(x + 5), nay = \frac{1}{3}(x + 9).

Kumbuka kwamba kama tungefanyau = x - y nav = x - 3y, basi mipaka ya muhimu itakuwa-1 \leq u \leq 1 na-9 \leq v \leq -5.

Ili kutatuax nay, sisi kuzidisha equation kwanza na3 na Ondoa equation pili,3u - v = (3x - 3y) - (x - 3y) = 2x. Kisha tunax = \frac{3u-v}{2}. Aidha, kama sisi tu Ondoa equation pili kutoka kwanza, sisi kupatau - v = (x - y) - (x - 3y) = 2y nay = \frac{u-v}{2}.

Parallelogram R na pembe (1, 2), (3, 4), (6, 5), na (4, 3) iliyoundwa na mistari y = x + 1, y = x bala 1, y = (x + 9) /3, na y = (x + 5) /3.
Kielelezo\PageIndex{8}: parallelogram katikaxy -plane kwamba tunataka kubadilisha na mabadiliko katika vigezo.

Hivyo, tunaweza kuchagua mabadiliko

T(u,v) = \left( \frac{3u - v}{2}, \, \frac{u - v}{2} \right) \nonumber na kukokotoa JacobianJ(u,v). Tuna

J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 3/2 & -1/2 \nonumber \\ 1/2 & -1/2 \end{vmatrix} = -\frac{3}{4} + \frac{1}{4} = - \frac{1}{2} \nonumber

Kwa hiyo,|J(u,v)| = \frac{1}{2}. Pia, integrand awali inakuwa

x - y = \frac{1}{2} [3u - v - u + v] = \frac{1}{2} [3u - u] = \frac{1}{2}[2u] = u. \nonumber

Kwa hiyo, kwa matumizi ya mabadilikoT, mabadiliko muhimu

\iint_R (x - y) dy \, dx = \int_{-9}^{-5} \int_{-1}^1 J (u,v) u \, du \, dv = \int_{-9}^{-5} \int_{-1}^1\left(\frac{1}{2}\right) u \, du \, dv, \nonumber ambayo ni rahisi sana kukokotoa.

Zoezi\PageIndex{4}

Kufanya mabadiliko sahihi ya vigezo katika muhimu\iint_R \frac{4}{(x - y)^2} dy \, dx, \nonumber ambapoR ni trapezoid imepakana na mistarix - y = 2, \, x - y = 4, \, x = 0, nay = 0. Andika muhimu inayosababisha.

Kidokezo

Fuata hatua katika mfano uliopita.

Jibu

x = \frac{1}{2}(v + u)nay = \frac{1}{2} (v - u)

na

\int_{2}^4 \int_{-u}^u \left(\frac{1}{2}\right)\cdot\frac{4}{u^2} \,dv \, du. \nonumber

Sisi ni tayari kutoa mkakati wa kutatua matatizo kwa ajili ya mabadiliko ya vigezo.

Mkakati wa Kutatua matatizo: Mabadiliko ya Vigezo
  1. Mchoro kanda iliyotolewa na tatizo katikaxy ndege -na kisha kuandika milinganyo ya curves kwamba fomu ya mipaka.
  2. Kulingana na kanda au integrand, chagua mabadilikox = g(u,v) nay = h(u,v).
  3. Kuamua mipaka mpya ya ushirikiano katikauv -ndege.
  4. Kupata JacobianJ (u,v).
  5. Katika integrand, kuchukua nafasi ya vigezo ili kupata integrand mpya.
  6. Badilisha nafasidy \, dx audx \, dy, kwa namna yoyote hutokea, naJ(u,v) du \, dv.

Katika mfano unaofuata, tunapata badala ambayo inafanya integrand rahisi sana kukokotoa.

Mfano\PageIndex{5}: Evaluating an Integral

Kutumia mabadiliko ya vigezou = x - y nav = x + y, tathmini muhimu\iint_R (x - y)e^{x^2-y^2} dA, \nonumber ambapoR ni kanda imepakanax + y = 1 na mistari na na curvesx + y = 3x^2 - y^2 = -1 nax^2 - y^2 = 1 (tazama mkoa wa kwanza katika Kielelezo\PageIndex{9}).

Suluhisho

Kama hapo awali, kwanza kupata kandaR na picha ya mabadiliko hivyo inakuwa rahisi kupata mipaka ya ushirikiano baada ya mabadiliko kufanywa (Kielelezo\PageIndex{9}).

Kwenye upande wa kushoto wa takwimu hii, kuna eneo tata R katika ndege ya Cartesian x y iliyofungwa na x mraba bala y squared = hasi 1, x squared bala y squared = 1, x + y = 3, na x + y = 1. Kisha kuna mshale kutoka kwenye grafu hii hadi upande wa kulia wa takwimu iliyowekwa na x = (u + v) /2 na y = (v minus u) /2. Kwenye upande wa kulia wa takwimu hii kuna eneo rahisi S katika ndege ya Cartesian u v-imefungwa na u v = hasi 1, u v = 1, v = 1, na v = 3.
Kielelezo\PageIndex{9}: Kubadilisha kandaR katika kandaS ili kurahisisha hesabu ya muhimu.

Kutokanau = x - y nav = x + y, tunax = \frac{u+v}{2}y = \frac{v-u}{2} na hivyo mabadiliko ya kutumia niT(u,v) = \left(\frac{u+v}{2}, \, \frac{v-u}{2}\right). Mstarix + y = 1 nax + y = 3 kuwav = 1 nav = 3, kwa mtiririko huo. Curvesx^2 - y^2 = 1 nax^2 - y^2 = -1 kuwauv = 1 nauv = -1, kwa mtiririko huo.

Hivyo tunaweza kuelezea kandaS (angalia mkoa wa pili Kielelezo\PageIndex{9}) kama

S = \left\{ (u,v) | 1 \leq v \leq 3, \, \frac{-1}{v} \leq u \leq \frac{1}{v}\right\}. \nonumber

Jacobian kwa mabadiliko haya ni

J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{vmatrix} = \frac{1}{2}. \nonumber

Kwa hiyo, kwa kutumia mabadilikoT, mabadiliko muhimu

\iint_R (x - y)e^{x^2-y^2} dA = \frac{1}{2} \int_1^3 \int_{-1/v}^{1/v} ue^{uv} du \, dv. \nonumber

Kufanya tathmini, tuna

\frac{1}{2} \int_1^3 \int_{-1/v}^{1/v} ue^{uv} du \, dv = \frac{2}{3e} \approx 0.245. \nonumber

Zoezi\PageIndex{5}

Kutumia mbadalax = v nay = \sqrt{u + v}, tathmini muhimu\displaystyle\iint_R y \, \sin (y^2 - x) \,dA, ambapoR eneo limepakana na mistariy = \sqrt{x}, \, x = 2 nay = 0.

Kidokezo

Mchoro picha na kupata mipaka ya ushirikiano.

Jibu

\frac{1}{2} (\sin 2 - 2)

Mabadiliko ya Vigezo kwa Integrals Triple

Kubadilisha vigezo katika integrals mara tatu hufanya kazi kwa njia sawa. Mbadala za kuratibu za cylindrical na spherical ni matukio maalum ya njia hii, ambayo tunaonyesha hapa.

Tuseme kwambaG ni kanda katikauvw -nafasi na ni mappedD katikaxyz -nafasi (Kielelezo\PageIndex{10}) naC^1 mabadiliko moja kwa mojaT(u,v,w) = (x,y,z) ambapox = g(u,v,w), \, y = h(u,v,w), naz = k(u,v,w).

Kwenye upande wa kushoto wa takwimu hii, kuna eneo G katika u v w nafasi. Kisha kuna mshale kutoka kwenye grafu hii hadi upande wa kulia wa takwimu iliyowekwa na x = g (u, v, w), y = h (u, v, w), na z = k (u, v, w). Kwenye upande wa kulia wa takwimu hii kuna kanda D katika nafasi ya xyz.
Kielelezo\PageIndex{10}: kandaG katikauvw -nafasi mapped kwa kandaD katikaxyz -nafasi.

Kisha kazi yoyoteF(x,y,z) defined juuD inaweza kuwa mawazo ya kama kazi nyingineH(u,v,w) ambayo hufafanuliwa juu yaG:

F(x,y,z) = F(g(u,v,w), \, h(u,v,w), \, k(u,v,w)) = H (u,v,w). \nonumber

Sasa tunahitaji kufafanua Jacobian kwa vigezo vitatu.

Ufafanuzi: Jacobian determinant

Maamuzi ya JacobianJ(u,v,w) katika vigezo vitatu hufafanuliwa kama ifuatavyo:

J(u,v,w) = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial y}{\partial u} & \dfrac{\partial z}{\partial u} \\ \dfrac{\partial x}{\partial v} & \dfrac{\partial y}{\partial v} & \dfrac{\partial z}{\partial v} \\ \dfrac{\partial x}{\partial w} & \dfrac{\partial y}{\partial w} & \dfrac{\partial z}{\partial w} \end{vmatrix}. \nonumber

Hii pia ni sawa na

J(u,v,w) = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} & \dfrac{\partial x}{\partial w} \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} & \dfrac{\partial y}{\partial w} \\ \dfrac{\partial z}{\partial u} & \dfrac{\partial z}{\partial v} & \dfrac{\partial z}{\partial w} \end{vmatrix}. \nonumber

Jacobian pia inaweza kutajwa tu kama\frac{\partial(x,y,z)}{\partial (u,v,w)}.

Pamoja na mabadiliko na Jacobian kwa vigezo vitatu, tuko tayari kuanzisha theorem inayoelezea mabadiliko ya vigezo kwa integrals mara tatu.

Mabadiliko ya Vigezo kwa Integrals Triple

HebuT(u,v,w) = (x,y,z) wapix = g(u,v,w), \, y = h(u,v,w), naz = k(u,v,w), kuwaC^1 mabadiliko moja kwa moja, na Jacobian nonzero, kwamba ramani kandaG katikauvw -nafasi katika kandaD katikaxyz -nafasi. Kama ilivyo katika kesi mbili-dimensional, ikiwaF inaendeleaD, basi

\begin{align} \iiint_D F(x,y,z) dV = \iiint_G f(g(u,v,w) \, h(u,v,w), \, k(u,v,w)) \left|\frac{\partial (x,y,z)}{\partial (u,v,w)}\right| du \, dv \, dw \\ = \iiint_G H(u,v,w) | J (u,v,w) | du \, dv \, dw. \end{align} \nonumber

Hebu sasa tuone jinsi mabadiliko katika integrals tatu kwa kuratibu cylindrical na spherical ni walioathirika na theorem hii. Tunatarajia kupata formula sawa na katika Integrals Triple katika Cylindrical na Spherical Kuratibu.

Mfano\PageIndex{6A}: Obtaining Formulas in Triple Integrals for Cylindrical and Spherical Coordinates

Kupata formula katika integrals mara tatu kwa

  1. cylindrical na
  2. kuratibu spherical.

Suluhisho

A.

Kwa kuratibu za cylindrical, mabadilikoT (r, \theta, z) = (x,y,z) yanatoka kwenyer\theta z nafasi ya Cartesian hadi nafasi ya Cartesianxyz (Kielelezo\PageIndex{11}). Hapax = r \, \cos \, \theta, \, y = r \, \sin \theta naz = z. Jacobian kwa ajili ya mabadiliko ni

J(r,\theta,z) = \frac{\partial (x,y,z)}{\partial (r,\theta,z)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{vmatrix} \nonumber

\begin{vmatrix} \cos \theta & -r\sin \theta & 0 \\ \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = r \, \cos^2 \theta + r \, \sin^2 \theta = r. \nonumber

Tunajua kwambar \geq 0, hivyo|J(r,\theta,z)| = r. Kisha muhimu mara tatu ni\iiint_D f(x,y,z)dV = \iiint_G f(r \, \cos \theta, \, r \, \sin \theta, \, z) r \, dr \, d\theta \, dz. \nonumber

Kwenye upande wa kushoto wa takwimu hii, kuna mchemraba G na pande zinazofanana na safu za kuratibu katika nafasi ya kuratibu ya cylindrical. Kisha kuna mshale kutoka kwenye grafu hii hadi upande wa kulia wa takwimu iliyowekwa na x = r cos theta, y = r dhambi theta, na z = z. upande wa kulia wa takwimu hii kuna kanda D katika x y z nafasi ambayo ni annulus nene. Juu ni lebo z = mara kwa mara, upande gorofa wima ni kinachoitwa theta = mara kwa mara, na upande wa nje ni kinachoitwa r = mara kwa mara.
Kielelezo\PageIndex{11}: mabadiliko kutoka kuratibu mstatili kwa kuratibu cylindrical inaweza kutibiwa kama mabadiliko ya vigezo kutoka kandaG katikar\theta z -nafasi kwa kandaD katikaxyz -nafasi.

B.

Kwa kuratibu za spherical, mabadilikoT(\rho,\theta,\varphi) yanatoka kwenye nafasi ya Cartesian hadi\rho\theta\varphi nafasi ya Cartesianxyz (Kielelezo\PageIndex{12}). Hapax = \rho \, \sin \varphi \, \cos \theta, \, y = \rho \, \sin \varphi \, \sin \theta, naz = \rho \, \cos \varphi. Jacobian kwa ajili ya mabadiliko ni

J(\rho,\theta,\varphi) = \frac{\partial (x,y,z)}{\partial (\rho,\theta,\varphi)} = \begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \varphi} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \varphi} \end{vmatrix} = \begin{vmatrix} \sin \varphi \cos \theta & -\rho \sin \varphi \sin \theta & \rho \cos \varphi \cos \theta \\ \sin \varphi \sin \theta & \rho \sin \varphi \cos \theta & \rho \cos \varphi \sin \theta \\ \cos \varphi & 0 & -\rho \sin \varphi \end{vmatrix}. \nonumber

Kupanua uamuzi kwa heshima na mstari wa tatu:

\ [kuanza {align*} &=\ cos\ varphi\ kuanza {vMatrix} -\ rho\ dhambi\ varphi\ dhambi\ theta &\ rho\ cos\ varphi\ cos\ theta\\ rho\\ dhambi\ varphi\\ rho\ dhambi\ varphi\ kuanza {vmatrix}\ dhambi\ varphi\ cos\ theta & -\ rho\ dhambi\ varphi\ dhambi\\ dhambi\ varphi\ dhambi\ theta &\ rho\ dhambi\ varphi\ cos\ theta\ mwisho {vMatrix}\\ [4pt]
&=\ cos\ varphi (-\ rho ^ 2\ dhambi\ varphi\,\ cos\ varphi\,\ dhambi\ varphi\\,\ cos ^ 2\ theta)\\ &\ quad -\ rho\ dhambi\ varphi (\ rho\ dhambi ^ 2\ varphi\ cos ^ 2\ theta +\ rho\ dhambi ^ 2\ varphi\ dhambi ^ 2\ theta)\\ [4pt]
&=-\ rho ^ 2\ dhambi\ varphi\ cos ^ 2\ varphi (\ dhambi ^ 2\ theta +\ cos ^ 2\ theta) -\ rhos ^ 2\ dhambi\ varphi 2\ varphi (\ dhambi ^ 2\ theta +\ cos ^ 2\ theta)\\ [4pt]
&= -\ rho^2\ dhambi\ varphi\ cos^2\ varphi -\ rho ^ 2\ dhambi\ varphi\ dhambi ^ 2\ varphi\\ [4pt]
&= -\ rho \ dhambi\ varphi (\ cos ^ 2\ varphi +\ dhambi ^ 2\ varphi) = -\ rho ^ 2\ dhambi\ varphi. \ mwisho {align*}\]

Tangu0 \leq \varphi \leq \pi, ni lazima tuwe na\sin \varphi \geq 0. Hivyo|J(\rho,\theta, \varphi)| = |-\rho^2 \sin \varphi| = \rho^2 \sin \varphi.

Kwenye upande wa kushoto wa takwimu hii, kuna mchemraba G na pande zinazofanana na shoka za kuratibu katika nafasi ya rho phi theta. Kisha kuna mshale kutoka kwenye grafu hii hadi upande wa kulia wa takwimu iliyowekwa na x = rho dhambi phi cos theta, y = rho dhambi phi dhambi theta, na z = rho cos phi. Upande wa kulia wa takwimu hii kuna kanda D katika xyz nafasi yaani annulus nene na ina uhakika (x, y, z) umeonyeshwa kama kuwa sawa na (rho, phi, theta). Juu ni lebo phi = mara kwa mara, upande gorofa wima ni kinachoitwa theta = mara kwa mara, na upande wa nje ni kinachoitwa rho = mara kwa mara.
Kielelezo\PageIndex{12}: mabadiliko kutoka kuratibu mstatili kwa kuratibu spherical inaweza kutibiwa kama mabadiliko ya vigezo kutoka kandaG katika\rho\theta\varphi -nafasi kwa kandaD katikaxyz -nafasi.

Kisha muhimu mara tatu inakuwa

\iiint_D f(x,y,z) dV = \iiint_G f(\rho \, \sin \varphi \, \cos \theta, \, \rho \, \sin \varphi \, \sin \theta, \rho \, \cos \varphi) \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta. \nonumber

Hebu jaribu mfano mwingine na ubadilishaji tofauti.

Mfano\PageIndex{6B}: Evaluating a Triple Integral with a Change of Variables

Tathmini muhimu mara tatu

\int_0^3 \int_0^4 \int_{y/2}^{(y/2)+1} \left(x + \frac{z}{3}\right) dx \, dy \, dz \nonumber

Katikaxyz -nafasi kwa kutumia mabadiliko

u = (2x - y) /2, \, v = y/2, naw = z/3.

Kisha kuunganisha juu ya mkoa sahihi katikauvw -nafasi.

Suluhisho

Kama hapo awali, aina fulani ya mchoro wa kandaG katikaxyz -nafasi juu ya ambayo tunapaswa kufanya ushirikiano inaweza kusaidia kutambua kandaD katikauvw -space (Kielelezo\PageIndex{13}). WaziG katikaxyz -nafasi imepakana na ndegex = y/2, \, x = (y/2) + 1, \, y = 0, \, y = 4, \, z = 0, naz = 4. Tunajua pia kwamba tunapaswa kutumiau = (2x - y) /2, \, v = y/2, naw = z/3 kwa mabadiliko. Tunahitaji kutatuax,y naz. Hapa tunaona kwambax = u + v, \, y = 2v, naz = 3w.

Kwenye upande wa kushoto wa takwimu hii, kuna sanduku G na pande 1, 2, na 1 kando ya u, v, na w axes, kwa mtiririko huo. Kisha kuna mshale kutoka kwenye grafu hii hadi upande wa kulia wa takwimu iliyowekwa na x = u + v, y = 2v, na z = 3w. Kwenye upande wa kulia wa takwimu hii kuna kanda D katika nafasi ya xyz ambayo ni sanduku lililozungushwa na pande 1, 4, na 3 pamoja na x, y, na z axes. Ndege ya nyuma ni alama x = y/2 au y = 2x. Ndege ya mbele ni alama x = y/2 + 1 au y = 2x minus 2.
Kielelezo\PageIndex{13}: KandaG katikauvw -nafasi inabadilishwa kuwa kandaD katikaxyz -nafasi.

Kutumia algebra ya msingi, tunaweza kupata nyuso zinazofanana kwa kandaG na mipaka ya ushirikiano katikauvw -nafasi. Ni rahisi kuorodhesha equations hizi katika meza.

Ulinganifu katikaxyz kwa kandaD Equations sambamba katikauvw kwa ajili ya kandaG Mipaka kwa ajili ya ushirikiano katikauvw
\ (xyz\) kwa kandaD "style="wima align:katikati;" >x = y/2 \ (uvw\) kwa kandaG "style="vertical-align:katikati;" >u + v = 2v/2 = v \ (uvw\)” style="wima align:katikati; ">u = 0
\ (xyz\) kwa kandaD "style="wima align:katikati;" >x = y/2 \ (uvw\) kwa kandaG "style="vertical-align:katikati;" >u + v = (2v/2) + 1 = v + 1 \ (uvw\)” style="wima align:katikati; ">u = 1
\ (xyz\) kwa kandaD "style="wima align:katikati;" >y = 0 \ (uvw\) kwa kandaG "style="vertical-align:katikati;" >2v = 0 \ (uvw\)” style="wima align:katikati; ">v = 0
\ (xyz\) kwa kandaD "style="wima align:katikati;" >y = 4 \ (uvw\) kwa kandaG "style="vertical-align:katikati;" >2v = 4 \ (uvw\)” style="wima align:katikati; ">v = 2
\ (xyz\) kwa kandaD "style="wima align:katikati;" >z = 0 \ (uvw\) kwa kandaG "style="vertical-align:katikati;" >3w = 0 \ (uvw\)” style="wima align:katikati; ">w = 0
\ (xyz\) kwa kandaD "style="wima align:katikati;" >z = 3 \ (uvw\) kwa kandaG "style="vertical-align:katikati;" >3w = 3 \ (uvw\)” style="wima align:katikati; ">w = 1

Sasa tunaweza kuhesabu Jacobian kwa mabadiliko:

J(u,v,w) = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} & \dfrac{\partial x}{\partial w} \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} & \dfrac{\partial y}{\partial w} \\ \dfrac{\partial z}{\partial u} & \dfrac{\partial z}{\partial v} & \dfrac{\partial z}{\partial w} \end{vmatrix} = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{vmatrix} = 6. \nonumber

Kazi ya kuunganishwa inakuwa

f(x,y,z) = x + \frac{z}{3} = u + v + \frac{3w}{3} = u + v + w. \nonumber

Sasa tuko tayari kuweka kila kitu pamoja na kukamilisha tatizo.

\ [kuanza {align*}\ int_0 ^ 3\ int_0 ^ 4\ int_ {y/2} ^ {(y/2) +1}\ kushoto (x +\ frac {z} {3}\ haki) dx\, dy\, dz &=\ int_0 ^ 1\ int_0 ^ 2\ int_0 ^ 1 (u + v + w) |J (u, v, w) |du\, dv\, dw\\ [4pt]
&=\ int_0 ^ 1\ int_0 ^ 2\ int_0 ^ 1 (u + v + w) |6|du\, dv\\ [4pt]
&= 6\ int_0 ^ 1\ int_0 ^ 2\ int_ 0 ^ 1 (u + v + w)\, du\, dv\, dw\\ [4pt]
&= 6\ int_0 ^ 1\ int_0 ^ 2\ kushoto [\ frac {u ^ 2} {2} + vu + wu\ haki] _0 ^ 1\, dv\\, dw\\ [4pt]
&= 6\ int_0 ^ 1\ int_0_0 ^ 2\ kushoto (\ frac {1} {2} + v + u\ haki) dv\, dw\\ [4pt]
&= 6\ int_0 ^ 1\ kushoto [\ frac {1} {2} v +\ Frac {v ^ 2} {2} +\ frac {v ^ 2} + wv\ haki] _0 ^ 2 dw\\ [4pt]
&= 6\ int_0 ^ 1 (3 + 2w)\, dw = 6\ Big [3w + w ^ 2\ Big] _0 ^ 1 = 24. \ mwisho {align*}\]

Zoezi\PageIndex{6}

HebuD kuwa kanda katikaxyz -nafasi inavyoelezwa na1 \leq x \leq 2, \, 0 \leq xy \leq 2, na0 \leq z \leq 1.

Tathmini\iiint_D (x^2 y + 3xyz) \, dx \, dy \, dz kwa kutumia mabadilikou = x, \, v = xy, naw = 3z.

Kidokezo

Fanya meza kwa kila uso wa mikoa na uamuzi juu ya mipaka, kama inavyoonekana katika mfano.

Jibu

\int_0^3 \int_0^2 \int_1^2 \left(\frac{v}{3} + \frac{vw}{3u}\right) du \, dv \, dw = 2 + \ln 8 \nonumber

Dhana muhimu

  • MabadilikoT ni kazi inayobadilisha kandaG katika ndege moja (nafasi) kuwaR kanda. katika ndege nyingine (nafasi) kwa mabadiliko ya vigezo.
  • MabadilikoT: G \rightarrow R hufafanuliwa kamaT(u,v) = (x,y) (auT(u,v,w) = (x,y,z)) inasemekana kuwa mabadiliko ya moja kwa moja ikiwa hakuna ramani mbili kwenye ramani sawa ya picha.
  • Ikiwaf ni kuendeleaR, basi\iint_R f(x,y) dA = \iint_S f(g(u,v), \, h(u,v)) \left|\frac{\partial(x,y)}{\partial (u,v)}\right| du \, dv. \nonumber
  • IkiwaF ni kuendeleaR, basi\begin{align*}\iiint_R F(x,y,z) \, dV &= \iiint_G F(g(u,v,w), \, h(u,v,w), \, k(u,v,w) \left|\frac{\partial(x,y,z)}{\partial (u,v,w)}\right| \,du \, dv \, dw \\[4pt] &= \iiint_G H(u,v,w) |J(u,v,w)| \, du \, dv \, dw. \end{align*}

[T] Lamé ovals (au superellipses) ni curves ndege ya\left(\frac{x}{a}\right)^n + \left( \frac{y}{b}\right)^n = 1 milinganyo, ambapo a, b, na n ni chanya namba halisi.

Matumizi CAS kwa graph mikoaR imepakana na Lamé ovals kwaa = 1, \, b = 2, \, n = 4n = 6 mtiririko huo.

pata mabadiliko ambayo ramani eneoR imepakana na mviringo Laméx^4 + y^4 = 1 pia inaitwa squircle na graphed katika takwimu zifuatazo, katika kitengo disk.

Mraba wa urefu wa upande 2 na pembe za mviringo.

c Tumia CAS ili kupata makadirio ya eneo hiloA (R) of the region R bounded by x^4 + y^4 = 1. Round your answer to two decimal places.

[T] Lamé ovals have been consistently used by designers and architects. For instance, Gerald Robinson, a Canadian architect, has designed a parking garage in a shopping center in Peterborough, Ontario, in the shape of a superellipse of the equation \left(\frac{x}{a}\right)^n + \left( \frac{y}{b}\right)^n = 1 with \frac{a}{b} = \frac{9}{7} and n = e. Use a CAS to find an approximation of the area of the parking garage in the case a = 900 yards, b = 700 yards, and n = 2.72 yards.

[Hide Solution]

A(R) \simeq 83,999.2

Chapter Review Exercises

True or False? Justify your answer with a proof or a counterexample.

\int_a^b \int_c^d f(x,y) \, dy \, dx = \int_c^d \int_a^b f(x,y) \, dy \, dx \nonumber

Fubini’s theorem can be extended to three dimensions, as long as f is continuous in all variables.

[Hide solution]

True.

The integral \int_0^{2\pi} \int_0^1 \int_0^1 dz \, dr \, d\theta \nonumber represents the volume of a right cone.

The Jacobian of the transformation for x = u^2 - 2v, \, y = 3v - 2uv is given by -4u^2 + 6u + 4v.

[Hide Solution]

False.

Evaluate the following integrals.

\iint_R (5x^3y^2 - y^2) \, dA, \, R = \{(x,y)|0 \leq x \leq 2, \, 1 \leq y \leq 4\} \nonumber

\iint_D \frac{y}{3x^2 + 1} dA, \, D = \{(x,y) |0 \leq x \leq 1, \, -x \leq y \leq x\} \nonumber

[Hide Solution]

0

\iint_D \sin (x^2 + y^2) dA \nonumber where D is a disk of radius 2 centered at the origin \int_0^1 \int_0^1 xye^{x^2} dx \, dy \nonumber

[Hide Solution]

\frac{1}{4}

\int_{-1}^1 \int_0^z \int_0^{x-z} 6dy \, dx \, dz \nonumber

\iiint_R 3y \, dV, \nonumber where R = \{(x,y,z) |0 \leq x \leq 1, \, 0 \leq y \leq x, \, 0 \leq z \leq \sqrt{9 - y^2}\}

[Hide Solution]

1.475

\int_0^2 \int_0^{2\pi} \int_r^1 r \, dz \, d\theta \, dr \nonumber

\int_0^{2\pi} \int_0^{\pi/2} \int_1^3 \rho^2 \, \sin(\varphi) d\rho \, d\varphi, \, d\theta \nonumber

[Hide Solution]

\frac{52}{3} \pi

\int_0^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{-\sqrt{1-x^2-y^2}}^{\sqrt{1-x^2-y^2}} dz \, dy \, sx \nonumber

For the following problems, find the specified area or volume.

The area of region enclosed by one petal of r = \cos (4\theta).

[Hide Solution]

\frac{\pi}{16}

The volume of the solid that lies between the paraboloid z = 2x^2 + 2y^2 and the plane z = 8.

The volume of the solid bounded by the cylinder x^2 + y^2 = 16 and from z = 1 to z + x = 2.

[Hide Solution]

93.291

The volume of the intersection between two spheres of radius 1, the top whose center is (0,0,0.25) and the bottom, which is centered at (0,0,0).

For the following problems, find the center of mass of the region.

\rho(x,y) = xy on the circle with radius 1 in the first quadrant only.

[Hide Solution]

\left(\frac{8}{15}, \frac{8}{15}\right)

\rho(x,y) = (y + 1) \sqrt{x} in the region bounded by y = e^x, \, y = 0, and x = 1.

\rho(x,y,z) = z on the inverted cone with radius 2 and height 2.

\left(0,0,\frac{8}{5}\right)

The volume an ice cream cone that is given by the solid above z = \sqrt{(x^2 + y^2)} and below z^2 + x^2 + y^2 = z.

The following problems examine Mount Holly in the state of Michigan. Mount Holly is a landfill that was converted into a ski resort. The shape of Mount Holly can be approximated by a right circular cone of height 1100 ft and radius 6000 ft.

If the compacted trash used to build Mount Holly on average has a density 400 \, lb/ft^3, find the amount of work required to build the mountain.

[Hide Solution]

1.452 \pi \times 10^{15} ft-lb

In reality, it is very likely that the trash at the bottom of Mount Holly has become more compacted with all the weight of the above trash. Consider a density function with respect to height: the density at the top of the mountain is still density 400 \, lb/ft^3 and the density increases. Every 100 feet deeper, the density doubles. What is the total weight of Mount Holly?

The following problems consider the temperature and density of Earth’s layers.

[T] The temperature of Earth’s layers is exhibited in the table below. Use your calculator to fit a polynomial of degree 3 to the temperature along the radius of the Earth. Then find the average temperature of Earth. (Hint: begin at 0 in the inner core and increase outward toward the surface)

Layer Depth from center (km) Temperature ^oC
Rocky Crust 0 to 40 0
Upper Mantle 40 to 150 870
Mantle 400 to 650 870
Inner Mantel 650 to 2700 870
Molten Outer Core 2890 to 5150 4300
Inner Core 5150 to 6378 7200

Source: http://www.enchantedlearning.com/sub...h/Inside.shtml

[Hide Solution]

y = -1.238 \times 10^{-7} x^3 + 0.001196 x^2 - 3.666x + 7208; average temperature approximately 2800 ^oC

[T] The density of Earth’s layers is displayed in the table below. Using your calculator or a computer program, find the best-fit quadratic equation to the density. Using this equation, find the total mass of Earth.

Layer Depth from center (km) Density (g/cm^3)
Inner Core 0 12.95
Outer Core 1228 11.05
Mantle 3488 5.00
Upper Mantle 6338 3.90
Crust 6378 2.55

Source: http://hyperphysics.phy-astr.gsu.edu...rthstruct.html

The following problems concern the Theorem of Pappus (see Moments and Centers of Mass for a refresher), a method for calculating volume using centroids. Assuming a region R, when you revolve around the x-axis the volume is given by V_x = 2\pi A \bar{y}, and when you revolve around the y-axis the volume is given by V_y = 2\pi A \bar{x}, where A is the area of R. Consider the region bounded by x^2 + y^2 = 1 and above y = x + 1.

Find the volume when you revolve the region around the x-axis.

[Hide Solution]

\frac{\pi}{3}

Find the volume when you revolve the region around the y-axis.

Glossary

Jacobian

the Jacobian J (u,v) in two variables is a 2 \times 2 determinant:

J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} \frac{\partial y}{\partial u} \nonumber \\ \frac{\partial x}{\partial v} \frac{\partial y}{\partial v} \end{vmatrix}; \nonumber

the Jacobian J (u,v,w) in three variables is a 3 \times 3 determinant:

J(u,v,w) = \begin{vmatrix} \frac{\partial x}{\partial u} \frac{\partial y}{\partial u} \frac{\partial z}{\partial u} \nonumber \\ \frac{\partial x}{\partial v} \frac{\partial y}{\partial v} \frac{\partial z}{\partial v} \nonumber \\ \frac{\partial x}{\partial w} \frac{\partial y}{\partial w} \frac{\partial z}{\partial w}\end{vmatrix} \nonumber

one-to-one transformation
a transformation T : G \rightarrow R defined as T(u,v) = (x,y) is said to be one-to-one if no two points map to the same image point
planar transformation
a function T that transforms a region G in one plane into a region R in another plane by a change of variables
transformation
a function that transforms a region GG in one plane into a region RR in another plane by a change of variables