15.7: Mabadiliko ya Vigezo katika Integrals nyingi
- Kuamua picha ya kanda chini ya mabadiliko fulani ya vigezo.
- Compute Jacobian ya mabadiliko kutokana.
- Kutathmini muhimu mara mbili kwa kutumia mabadiliko ya vigezo.
- Kutathmini muhimu mara tatu kwa kutumia mabadiliko ya vigezo.
Kumbuka kutoka Utawala wa Kubadilisha njia ya ushirikiano na kubadilisha. Wakati wa kutathmini muhimu kama vile
∫32x(x2−4)5dx,
sisi badalau=g(x)=x2−4. Kishadu=2xdx auxdx=12du mipaka inabadilikau=g(2)=22−4=0 nau=g(3)=9−4=5. Hivyo muhimu inakuwa
∫5012u5du
na hii muhimu ni rahisi sana kutathmini. Kwa maneno mengine, wakati wa kutatua matatizo ya ushirikiano, tunafanya mbadala zinazofaa ili kupata muhimu ambayo inakuwa rahisi zaidi kuliko muhimu ya awali.
Sisi pia kutumika wazo hili wakati sisi kubadilishwa integrals mara mbili katika kuratibu mstatili kwa kuratibu polar na kubadilishwa integrals mara tatu katika kuratibu mstatili kwa cylindrical au spherical kuratibu kufanya hesabu rahisi. Kwa ujumla zaidi,
∫baf(x)dx=∫dcf(g(u))g′(u)du,
wapix=g(u),dx=g′(u)du, nau=c nau=d kukidhic=g(a) nad=g(b).
Matokeo sawa hutokea katika integrals mara mbili wakati sisi mbadala
- x=f(r,θ)=rcosθ
- y=g(r,θ)=rsinθ, na
- dA=dxdy=rdrdθ.
Kisha sisi kupata
∬
ambapo uwanjaR ni kubadilishwa na uwanjaS katika kuratibu polar. Kwa ujumla, kazi ambayo sisi kutumia mabadiliko ya vigezo kufanya ushirikiano rahisi inaitwa mabadiliko au ramani.
Mabadiliko ya Planar
Mabadiliko ya planarT ni kazi inayobadilisha kandaG katika ndege moja kuwa kandaR katika ndege nyingine kwa mabadiliko ya vigezo. WoteG naR ni subsets yaR^2. Kwa mfano, Kielelezo\PageIndex{1} inaonyesha kandaG katikauv -ndege kubadilishwa katika kandaR katikaxy -ndege na mabadiliko ya vigezox = g(u,v) nay = h(u,v), au wakati mwingine sisi kuandikax = x(u,v) nay = y(u,v). Sisi kawaida kudhani kwamba kila moja ya kazi hizi ina kuendelea kwanza sehemu derivatives, ambayo ina maanag_u, \, g_v, \, h_u, nah_v kuwepo na pia ni kuendelea. Mahitaji ya mahitaji haya yatakuwa wazi hivi karibuni.

MabadilikoT: \, G \rightarrow R, hufafanuliwa kamaT(u,v) = (x,y), inasemekana kuwa mabadiliko ya moja kwa moja ikiwa hakuna ramani ya pointi mbili kwenye hatua sawa ya picha.
Kuonyesha kwambaT s mabadiliko moja kwa moja, sisi kudhaniT(u_1,v_1) = T(u_2, v_2) na kuonyesha kwamba kama matokeo sisi kupata(u_1,v_1) = (u_2, v_2). Ikiwa mabadilikoT ni moja kwa moja katika kikoaG, basi inverseT^{-1} ipo na kikoaR kama hichoT^{-1} \circ T naT \circ T^{-1} ni kazi za utambulisho.
Kielelezo\PageIndex{2} inaonyesha ramaniT(u,v) = (x,y) wapix nay ni kuhusianau na nav kwa equationsx = g(u,v) nay = h(u,v). MkoaG ni uwanja waT na kandaR ni mbalimbali yaT, pia inajulikana kama picha yaG chini ya mabadilikoT.
Tuseme mabadilikoT hufafanuliwa kamaT(r,\theta) = (x,y) ambapox = r \, \cos \, \theta, \, y = r \, \sin \, \theta. Pata picha ya mstatili wa polarG = \{(r,\theta) | 0 \leq r \leq 1, \, 0 \leq \theta \leq \pi/2\} katikar\theta -ndege hadi kandaR katikaxy -ndege. Onyesha kwambaT ni mabadiliko moja kwa moja katikaG na kupataT^{-1} (x,y).
Suluhisho
Kwa kuwar inatofautiana kutoka 0 hadi 1 katikar\theta -ndege, tuna diski ya mviringo ya radius 0 kwa 1 katikaxy -plane. Kwa sababu\theta inatofautiana kutoka 0 hadi\pi/2 kwenyer\theta ndege, tunaishia kupata mduara wa robo ya radius1 katika roboduara ya kwanza yaxy -plane (Kielelezo\PageIndex{2}). HivyoR ni mduara wa robo umepakana nax^2 + y^2 = 1 katika roboduara ya kwanza.

Ili kuonyesha kwambaT ni mabadiliko moja kwa moja, kudhaniT(r_1,\theta_1) = T(r_2, \theta_2) na kuonyesha kama matokeo kwamba(r_1,\theta_1) = (r_2, \theta_2). Katika kesi hiyo, tuna
T(r_1,\theta_1) = T(r_2, \theta_2), \nonumber
(x_1,y_1) = (x_1,y_1), \nonumber
(r_1 \cos \, \theta_1, r_1 \sin \, \theta_1) = (r_2 \cos \, \theta_2, r_2 \sin \, \theta_2), \nonumber
r_1 \cos \, \theta_1 = r_2 \cos \, \theta_2, \, r_1 \sin \, \theta_1 = r_2 \sin \, \theta_2. \nonumber
Kugawanya, tunapata
\frac{r_1 \cos \, \theta_1}{r_1 \sin \, \theta_1} = \frac{ r_2 \cos \, \theta_2}{ r_2 \sin \, \theta_2} \nonumber
\frac{\cos \, \theta_1}{\sin \, \theta_1} = \frac{\cos \, \theta_2}{\sin \, \theta_2} \nonumber
\tan \, \theta_1 = \tan \, \theta_2 \nonumber
\theta_1 = \theta_2 \nonumber
tangu kazi ya tangent ni kazi moja kwa moja katika kipindi0 \leq \theta \leq \pi/2. Pia, tangu0 \leq r \leq 1, tunar_1 = r_2, \, \theta_1 = \theta_2. Kwa hiyo,(r_1,\theta_1) = (r_2, \theta_2) naT ni mabadiliko moja kwa moja kutokaG kwaR.
Ili kupataT^{-1}(x,y) kutatuar,\theta kwa suala lax,y. Tayari tunajua kwambar^2 = x^2 + y^2 na\tan \, \theta = \frac{y}{x}. HivyoT^{-1}(x,y) = (r,\theta) hufafanuliwa kamar = \sqrt{x^2 + y^2} na\tan^{-1} \left(\frac{y}{x}\right).
Hebu mabadilikoT yaelezwe naT(u,v) = (x,y) wapix = u^2 - v^2 nay = uv. Pata picha ya pembetatuuv katika-ndege yenye vipeo(0,0), \, (0,1), na(1,1).
Suluhisho
Pembetatu na picha yake zinaonyeshwa kwenye Kielelezo\PageIndex{3}. Ili kuelewa jinsi pande za pembetatu zinavyobadilika, piga upande unaojiunga(0,0) na(0,1) upandeA, upande unaojiunga(0,0) na(1,1) upandeB, na upande unaojiunga(1,1) na(0,1) upandeC.

- Kwa upandeA: \, u = 0, \, 0 \leq v \leq 1 hubadilishax = -v^2, \, y = 0 hivyo hii ni upandeA' unaojiunga(-1,0) na(0,0).
- Kwa upandeB: \, u = v, \, 0 \leq u \leq 1 hubadilishax = 0, \, y = u^2 hivyo hii ni upandeB' unaojiunga(0,0) na(0,1).
- Kwa upandeC: \, 0 \leq u \leq 1, \, v = 1 inabadilishax = u^2 - 1, \, y = u (hivyox = y^2 - 1 hivyo hii ni upandeC' ambayo inafanya nusu ya juu ya safu parabolic kujiunga(-1,0) na(0,1).
Vipengele vyote katika kanda nzima ya pembetatu katikauv -ndege hupangwa ndani ya kanda ya parabolic katikaxy -plane.
Hebu mabadilikoT kuelezwa kamaT(u,v) = (x,y) ambapox = u + v, \, y = 3v. Pata picha ya mstatiliG = \{(u,v) : \, 0 \leq u \leq 1, \, 0 \leq v \leq 2\} kutokauv -ndege baada ya mabadiliko katika kandaR katikaxy -ndege. Onyesha kwambaT ni mabadiliko moja kwa moja na kupataT^{-1} (x,y).
- Kidokezo
-
Fuata hatua za Mfano\PageIndex{1B}.
- Jibu
-
T^{-1} (x,y) = (u,v)wapiu = \frac{3x-y}{3} nav = \frac{y}{3}
Kutumia ufafanuzi, tuna
\Delta A \approx J(u,v) \Delta u \Delta v = \left|\frac{\partial (x,y)}{\partial (u,v)}\right| \Delta u \Delta v. \nonumber
Kumbuka kuwa Jacobian mara nyingi inaashiria tu kwa
J(u,v) = \frac{\partial (x,y)}{\partial (u,v)}. \nonumber
Kumbuka pia kwamba
\begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial y}{\partial u} \nonumber \\ \dfrac{\partial x}{\partial v} & \dfrac{\partial y}{\partial v} \end{vmatrix} = \left( \frac{\partial x}{\partial u}\frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}\right) = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} \nonumber \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} \end{vmatrix} . \nonumber
Hivyo nukuuJ(u,v) = \frac{\partial(x,y)}{\partial(u,v)} unaonyesha kwamba tunaweza kuandika uamuzi wa Jacobian na sehemu zax mstari wa kwanza na sehemu zay mstari wa pili.
Kupata Jacobian ya mabadiliko aliyopewa katika Mfano\PageIndex{1A}.
Suluhisho
Mabadiliko katika mfano niT(r,\theta) = ( r \, \cos \, \theta, \, r \, \sin \, \theta) wapix = r \, \cos \, \theta nay = r \, \sin \, \theta. Hivyo Jacobian ni
J(r, \theta) = \frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \dfrac{\partial x}{\partial r} & \dfrac{\partial x}{\partial \theta} \\ \dfrac{\partial y}{\partial r} & \dfrac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos \theta & -r\sin \theta \\ \sin \theta & r\cos\theta \end{vmatrix} = r \, \cos^2\theta + r \, \sin^2\theta = r ( \cos^2\theta + \sin^2\theta) = r. \nonumber
Kupata Jacobian ya mabadiliko aliyopewa katika Mfano\PageIndex{1B}.
Suluhisho
Mabadiliko katika mfano niT(u,v) = (u^2 - v^2, uv) wapix = u^2 - v^2 nay = uv. Hivyo Jacobian ni
J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 2u & -2v \\ v & u \end{vmatrix} = 2u^2 + 2v^2. \nonumber
Kupata Jacobian ya mabadiliko aliyopewa katika checkpoint uliopita:T(u,v) = (u + v, 2v).
- Kidokezo
-
Fuata hatua katika mifano miwili iliyopita.
- Jibu
-
J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} \nonumber \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 1 & 1 \nonumber \\ 0 & 2 \end{vmatrix} = 2 \nonumber
Mabadiliko ya Vigezo kwa Integrals Double
Tumeona kwamba, chini ya mabadiliko ya vigezoT(u,v) = (x,y) ambapox = g(u,v) nay = h(u,v), kanda ndogo\Delta A katikaxy -ndege ni kuhusiana na eneo lililoundwa na bidhaa\Delta u \Delta v katikauv -ndege na makadirio
\Delta A \approx J(u,v) \Delta u, \, \Delta v. \nonumber
Sasa hebu kurudi kwenye ufafanuzi wa mara mbili muhimu kwa dakika:
\iint_R f(x,y)fA = \lim_{m,n \rightarrow \infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}, y_{ij}) \Delta A. \nonumber
Akizungumzia Kielelezo\PageIndex{5}, angalia kwamba tumegawanyika kandaS katikauv -plane ndani ya subrectangles ndogoS_{ij} na tunaruhusu subrectanglesR_{ij} katikaxy -plane kuwa picha zaS_{ij} chini ya mabadilikoT(u,v) = (x,y).

Kisha muhimu mara mbili inakuwa
\iint_R = f(x,y)dA = \lim_{m,n \rightarrow \infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}, y_{ij}) \Delta A = \lim_{m,n \rightarrow \infty} \sum_{i=1}^m \sum_{j=1}^n f(g(u_{ij}, v_{ij}), \, h(u_{ij}, v_{ij})) | J(u_{ij}, v_{ij})| \Delta u \Delta v. \nonumber
Taarifa hii ni hasa mara mbili Riemann jumla kwa muhimu
\iint_S f(g(u,v), \, h(u,v)) \left|\frac{\partial (x,y)}{\partial(u,v)}\right| du \, dv. \nonumber
HebuT(u,v) = (x,y) wapix = g(u,v) nay = h(u,v) kuwaC^1 mabadiliko moja kwa moja, na Nonzero Jacobian juu ya mambo ya ndani ya kandaS katikauv -ndege ni ramaniSR katika kanda katikaxy -ndege. Ikiwaf ni kuendeleaR, basi
\iint_R f(x,y) dA = \iint_S f(g(u,v), \, h(u,v)) \left|\frac{\partial (x,y)}{\partial(u,v)}\right| du \, dv. \nonumber
Pamoja na theorem hii kwa integrals mara mbili, tunaweza kubadilisha vigezo kutoka(x,y) kwa(u,v) katika muhimu mara mbili tu kwa kuchukua nafasi
dA = dx \, dy = \left|\frac{\partial (x,y)}{\partial (u,v)} \right| du \, dv \nonumber
wakati sisi kutumia substitutionsx = g(u,v)y = h(u,v) na kisha mabadiliko ya mipaka ya ushirikiano ipasavyo. Mabadiliko haya ya vigezo mara nyingi hufanya computations yoyote rahisi zaidi.
Fikiria muhimu
\int_0^2 \int_0^{\sqrt{2x-x^2}} \sqrt{x^2 + y^2} dy \, dx. \nonumber
Matumizi ya mabadiliko ya vigezox = r \, \cos \, \theta nay = r \, \sin \, \theta, na kupata muhimu kusababisha.
Suluhisho
Kwanza tunahitaji kupata eneo la ushirikiano. Mkoa huu umepakana chiniy = 0 na juu nay = \sqrt{2x - x^2} (Kielelezo\PageIndex{6}).

Kusambaza na kukusanya maneno, tunaona kwamba kanda ni nusu ya juu ya mduarax^2 + y^2 - 2x = 0, yaaniy^2 + ( x - 1)^2 = 1. Katika kuratibu polar, mduara nir = 2 \, cos \, \theta hivyo eneo la ushirikiano katika kuratibu polar imefungwa0 \leq r \leq \cos \, \theta na0 \leq \theta \leq \frac{\pi}{2}.
Jacobian niJ(r, \theta) = r, kama inavyoonekana katika Mfano\PageIndex{2A}. tangur \geq 0, tuna|J(r,\theta)| = r.
Integrand\sqrt{x^2 + y^2} mabadilikor katika kuratibu polar, hivyo mara mbili iterated muhimu ni
\int_0^2 \int_0^{\sqrt{2x-x^2}} \sqrt{x^2 + y^2} dy \, dx = \int_0^{\pi/2} \int_0^{2 \, cos \, \theta} r | j(r, \theta)|dr \, d\theta = \int_0^{\pi/2} \int_0^{2 \, cos \, \theta} r^2 dr \, d\theta. \nonumber
Kuzingatia\int_0^1 \int_0^{\sqrt{1-x^2}} (x^2 + y^2) dy \, dx, matumizi muhimu mabadiliko ya vigezox = r \, cos \, \thetay = r \, sin \, \theta na kupata matokeo muhimu.
- Kidokezo
-
Fuata hatua katika mfano uliopita.
- Jibu
-
\int_0^{\pi/2} \int_0^1 r^3 dr \, d\theta \nonumber
Angalia katika mfano unaofuata kwamba eneo ambalo tutaunganisha linaweza kupendekeza mabadiliko ya kufaa kwa ushirikiano. Hii ni hali ya kawaida na muhimu.
Fikiria muhimu\iint_R (x - y) dy \, dx, \nonumber ambapoR parallelogram inajiunga na pointi(1,2), \, (3,4), \, (4,3), na(6,5) (Kielelezo\PageIndex{7}). Kufanya mabadiliko sahihi ya vigezo, na kuandika muhimu kusababisha.

Suluhisho
Kwanza, tunahitaji kuelewa eneo ambalo tunapaswa kuunganisha. Pande za parallelogram nix - y + 1, \, x - y - 1 = 0, \, x - 3y + 5 = 0 nax - 3y + 9 = 0 (Kielelezo\PageIndex{8}). Njia nyingine ya kuwaangalia nix - y = -1, \, x - y = 1, \, x - 3y = -5, nax - 3y = 9.
Wazi parallelogram imefungwa na mistariy = x + 1, \, y = x - 1, \, y = \frac{1}{3}(x + 5), nay = \frac{1}{3}(x + 9).
Kumbuka kwamba kama tungefanyau = x - y nav = x - 3y, basi mipaka ya muhimu itakuwa-1 \leq u \leq 1 na-9 \leq v \leq -5.
Ili kutatuax nay, sisi kuzidisha equation kwanza na3 na Ondoa equation pili,3u - v = (3x - 3y) - (x - 3y) = 2x. Kisha tunax = \frac{3u-v}{2}. Aidha, kama sisi tu Ondoa equation pili kutoka kwanza, sisi kupatau - v = (x - y) - (x - 3y) = 2y nay = \frac{u-v}{2}.

Hivyo, tunaweza kuchagua mabadiliko
T(u,v) = \left( \frac{3u - v}{2}, \, \frac{u - v}{2} \right) \nonumber na kukokotoa JacobianJ(u,v). Tuna
J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 3/2 & -1/2 \nonumber \\ 1/2 & -1/2 \end{vmatrix} = -\frac{3}{4} + \frac{1}{4} = - \frac{1}{2} \nonumber
Kwa hiyo,|J(u,v)| = \frac{1}{2}. Pia, integrand awali inakuwa
x - y = \frac{1}{2} [3u - v - u + v] = \frac{1}{2} [3u - u] = \frac{1}{2}[2u] = u. \nonumber
Kwa hiyo, kwa matumizi ya mabadilikoT, mabadiliko muhimu
\iint_R (x - y) dy \, dx = \int_{-9}^{-5} \int_{-1}^1 J (u,v) u \, du \, dv = \int_{-9}^{-5} \int_{-1}^1\left(\frac{1}{2}\right) u \, du \, dv, \nonumber ambayo ni rahisi sana kukokotoa.
Kufanya mabadiliko sahihi ya vigezo katika muhimu\iint_R \frac{4}{(x - y)^2} dy \, dx, \nonumber ambapoR ni trapezoid imepakana na mistarix - y = 2, \, x - y = 4, \, x = 0, nay = 0. Andika muhimu inayosababisha.
- Kidokezo
-
Fuata hatua katika mfano uliopita.
- Jibu
-
x = \frac{1}{2}(v + u)nay = \frac{1}{2} (v - u)
na
\int_{2}^4 \int_{-u}^u \left(\frac{1}{2}\right)\cdot\frac{4}{u^2} \,dv \, du. \nonumber
Sisi ni tayari kutoa mkakati wa kutatua matatizo kwa ajili ya mabadiliko ya vigezo.
- Mchoro kanda iliyotolewa na tatizo katikaxy ndege -na kisha kuandika milinganyo ya curves kwamba fomu ya mipaka.
- Kulingana na kanda au integrand, chagua mabadilikox = g(u,v) nay = h(u,v).
- Kuamua mipaka mpya ya ushirikiano katikauv -ndege.
- Kupata JacobianJ (u,v).
- Katika integrand, kuchukua nafasi ya vigezo ili kupata integrand mpya.
- Badilisha nafasidy \, dx audx \, dy, kwa namna yoyote hutokea, naJ(u,v) du \, dv.
Katika mfano unaofuata, tunapata badala ambayo inafanya integrand rahisi sana kukokotoa.
Kutumia mabadiliko ya vigezou = x - y nav = x + y, tathmini muhimu\iint_R (x - y)e^{x^2-y^2} dA, \nonumber ambapoR ni kanda imepakanax + y = 1 na mistari na na curvesx + y = 3x^2 - y^2 = -1 nax^2 - y^2 = 1 (tazama mkoa wa kwanza katika Kielelezo\PageIndex{9}).
Suluhisho
Kama hapo awali, kwanza kupata kandaR na picha ya mabadiliko hivyo inakuwa rahisi kupata mipaka ya ushirikiano baada ya mabadiliko kufanywa (Kielelezo\PageIndex{9}).

Kutokanau = x - y nav = x + y, tunax = \frac{u+v}{2}y = \frac{v-u}{2} na hivyo mabadiliko ya kutumia niT(u,v) = \left(\frac{u+v}{2}, \, \frac{v-u}{2}\right). Mstarix + y = 1 nax + y = 3 kuwav = 1 nav = 3, kwa mtiririko huo. Curvesx^2 - y^2 = 1 nax^2 - y^2 = -1 kuwauv = 1 nauv = -1, kwa mtiririko huo.
Hivyo tunaweza kuelezea kandaS (angalia mkoa wa pili Kielelezo\PageIndex{9}) kama
S = \left\{ (u,v) | 1 \leq v \leq 3, \, \frac{-1}{v} \leq u \leq \frac{1}{v}\right\}. \nonumber
Jacobian kwa mabadiliko haya ni
J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{vmatrix} = \frac{1}{2}. \nonumber
Kwa hiyo, kwa kutumia mabadilikoT, mabadiliko muhimu
\iint_R (x - y)e^{x^2-y^2} dA = \frac{1}{2} \int_1^3 \int_{-1/v}^{1/v} ue^{uv} du \, dv. \nonumber
Kufanya tathmini, tuna
\frac{1}{2} \int_1^3 \int_{-1/v}^{1/v} ue^{uv} du \, dv = \frac{2}{3e} \approx 0.245. \nonumber
Kutumia mbadalax = v nay = \sqrt{u + v}, tathmini muhimu\displaystyle\iint_R y \, \sin (y^2 - x) \,dA, ambapoR eneo limepakana na mistariy = \sqrt{x}, \, x = 2 nay = 0.
- Kidokezo
-
Mchoro picha na kupata mipaka ya ushirikiano.
- Jibu
-
\frac{1}{2} (\sin 2 - 2)
Mabadiliko ya Vigezo kwa Integrals Triple
Kubadilisha vigezo katika integrals mara tatu hufanya kazi kwa njia sawa. Mbadala za kuratibu za cylindrical na spherical ni matukio maalum ya njia hii, ambayo tunaonyesha hapa.
Tuseme kwambaG ni kanda katikauvw -nafasi na ni mappedD katikaxyz -nafasi (Kielelezo\PageIndex{10}) naC^1 mabadiliko moja kwa mojaT(u,v,w) = (x,y,z) ambapox = g(u,v,w), \, y = h(u,v,w), naz = k(u,v,w).

Kisha kazi yoyoteF(x,y,z) defined juuD inaweza kuwa mawazo ya kama kazi nyingineH(u,v,w) ambayo hufafanuliwa juu yaG:
F(x,y,z) = F(g(u,v,w), \, h(u,v,w), \, k(u,v,w)) = H (u,v,w). \nonumber
Sasa tunahitaji kufafanua Jacobian kwa vigezo vitatu.
Maamuzi ya JacobianJ(u,v,w) katika vigezo vitatu hufafanuliwa kama ifuatavyo:
J(u,v,w) = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial y}{\partial u} & \dfrac{\partial z}{\partial u} \\ \dfrac{\partial x}{\partial v} & \dfrac{\partial y}{\partial v} & \dfrac{\partial z}{\partial v} \\ \dfrac{\partial x}{\partial w} & \dfrac{\partial y}{\partial w} & \dfrac{\partial z}{\partial w} \end{vmatrix}. \nonumber
Hii pia ni sawa na
J(u,v,w) = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} & \dfrac{\partial x}{\partial w} \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} & \dfrac{\partial y}{\partial w} \\ \dfrac{\partial z}{\partial u} & \dfrac{\partial z}{\partial v} & \dfrac{\partial z}{\partial w} \end{vmatrix}. \nonumber
Jacobian pia inaweza kutajwa tu kama\frac{\partial(x,y,z)}{\partial (u,v,w)}.
Pamoja na mabadiliko na Jacobian kwa vigezo vitatu, tuko tayari kuanzisha theorem inayoelezea mabadiliko ya vigezo kwa integrals mara tatu.
HebuT(u,v,w) = (x,y,z) wapix = g(u,v,w), \, y = h(u,v,w), naz = k(u,v,w), kuwaC^1 mabadiliko moja kwa moja, na Jacobian nonzero, kwamba ramani kandaG katikauvw -nafasi katika kandaD katikaxyz -nafasi. Kama ilivyo katika kesi mbili-dimensional, ikiwaF inaendeleaD, basi
\begin{align} \iiint_D F(x,y,z) dV = \iiint_G f(g(u,v,w) \, h(u,v,w), \, k(u,v,w)) \left|\frac{\partial (x,y,z)}{\partial (u,v,w)}\right| du \, dv \, dw \\ = \iiint_G H(u,v,w) | J (u,v,w) | du \, dv \, dw. \end{align} \nonumber
Hebu sasa tuone jinsi mabadiliko katika integrals tatu kwa kuratibu cylindrical na spherical ni walioathirika na theorem hii. Tunatarajia kupata formula sawa na katika Integrals Triple katika Cylindrical na Spherical Kuratibu.
Kupata formula katika integrals mara tatu kwa
- cylindrical na
- kuratibu spherical.
Suluhisho
A.
Kwa kuratibu za cylindrical, mabadilikoT (r, \theta, z) = (x,y,z) yanatoka kwenyer\theta z nafasi ya Cartesian hadi nafasi ya Cartesianxyz (Kielelezo\PageIndex{11}). Hapax = r \, \cos \, \theta, \, y = r \, \sin \theta naz = z. Jacobian kwa ajili ya mabadiliko ni
J(r,\theta,z) = \frac{\partial (x,y,z)}{\partial (r,\theta,z)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{vmatrix} \nonumber
\begin{vmatrix} \cos \theta & -r\sin \theta & 0 \\ \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = r \, \cos^2 \theta + r \, \sin^2 \theta = r. \nonumber
Tunajua kwambar \geq 0, hivyo|J(r,\theta,z)| = r. Kisha muhimu mara tatu ni\iiint_D f(x,y,z)dV = \iiint_G f(r \, \cos \theta, \, r \, \sin \theta, \, z) r \, dr \, d\theta \, dz. \nonumber

B.
Kwa kuratibu za spherical, mabadilikoT(\rho,\theta,\varphi) yanatoka kwenye nafasi ya Cartesian hadi\rho\theta\varphi nafasi ya Cartesianxyz (Kielelezo\PageIndex{12}). Hapax = \rho \, \sin \varphi \, \cos \theta, \, y = \rho \, \sin \varphi \, \sin \theta, naz = \rho \, \cos \varphi. Jacobian kwa ajili ya mabadiliko ni
J(\rho,\theta,\varphi) = \frac{\partial (x,y,z)}{\partial (\rho,\theta,\varphi)} = \begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \varphi} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \varphi} \end{vmatrix} = \begin{vmatrix} \sin \varphi \cos \theta & -\rho \sin \varphi \sin \theta & \rho \cos \varphi \cos \theta \\ \sin \varphi \sin \theta & \rho \sin \varphi \cos \theta & \rho \cos \varphi \sin \theta \\ \cos \varphi & 0 & -\rho \sin \varphi \end{vmatrix}. \nonumber
Kupanua uamuzi kwa heshima na mstari wa tatu:
\ [kuanza {align*} &=\ cos\ varphi\ kuanza {vMatrix} -\ rho\ dhambi\ varphi\ dhambi\ theta &\ rho\ cos\ varphi\ cos\ theta\\ rho\\ dhambi\ varphi\\ rho\ dhambi\ varphi\ kuanza {vmatrix}\ dhambi\ varphi\ cos\ theta & -\ rho\ dhambi\ varphi\ dhambi\\ dhambi\ varphi\ dhambi\ theta &\ rho\ dhambi\ varphi\ cos\ theta\ mwisho {vMatrix}\\ [4pt]
&=\ cos\ varphi (-\ rho ^ 2\ dhambi\ varphi\,\ cos\ varphi\,\ dhambi\ varphi\\,\ cos ^ 2\ theta)\\ &\ quad -\ rho\ dhambi\ varphi (\ rho\ dhambi ^ 2\ varphi\ cos ^ 2\ theta +\ rho\ dhambi ^ 2\ varphi\ dhambi ^ 2\ theta)\\ [4pt]
&=-\ rho ^ 2\ dhambi\ varphi\ cos ^ 2\ varphi (\ dhambi ^ 2\ theta +\ cos ^ 2\ theta) -\ rhos ^ 2\ dhambi\ varphi 2\ varphi (\ dhambi ^ 2\ theta +\ cos ^ 2\ theta)\\ [4pt]
&= -\ rho^2\ dhambi\ varphi\ cos^2\ varphi -\ rho ^ 2\ dhambi\ varphi\ dhambi ^ 2\ varphi\\ [4pt]
&= -\ rho \ dhambi\ varphi (\ cos ^ 2\ varphi +\ dhambi ^ 2\ varphi) = -\ rho ^ 2\ dhambi\ varphi. \ mwisho {align*}\]
Tangu0 \leq \varphi \leq \pi, ni lazima tuwe na\sin \varphi \geq 0. Hivyo|J(\rho,\theta, \varphi)| = |-\rho^2 \sin \varphi| = \rho^2 \sin \varphi.
.png)
Kisha muhimu mara tatu inakuwa
\iiint_D f(x,y,z) dV = \iiint_G f(\rho \, \sin \varphi \, \cos \theta, \, \rho \, \sin \varphi \, \sin \theta, \rho \, \cos \varphi) \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta. \nonumber
Hebu jaribu mfano mwingine na ubadilishaji tofauti.
Tathmini muhimu mara tatu
\int_0^3 \int_0^4 \int_{y/2}^{(y/2)+1} \left(x + \frac{z}{3}\right) dx \, dy \, dz \nonumber
Katikaxyz -nafasi kwa kutumia mabadiliko
u = (2x - y) /2, \, v = y/2, naw = z/3.
Kisha kuunganisha juu ya mkoa sahihi katikauvw -nafasi.
Suluhisho
Kama hapo awali, aina fulani ya mchoro wa kandaG katikaxyz -nafasi juu ya ambayo tunapaswa kufanya ushirikiano inaweza kusaidia kutambua kandaD katikauvw -space (Kielelezo\PageIndex{13}). WaziG katikaxyz -nafasi imepakana na ndegex = y/2, \, x = (y/2) + 1, \, y = 0, \, y = 4, \, z = 0, naz = 4. Tunajua pia kwamba tunapaswa kutumiau = (2x - y) /2, \, v = y/2, naw = z/3 kwa mabadiliko. Tunahitaji kutatuax,y naz. Hapa tunaona kwambax = u + v, \, y = 2v, naz = 3w.

Kutumia algebra ya msingi, tunaweza kupata nyuso zinazofanana kwa kandaG na mipaka ya ushirikiano katikauvw -nafasi. Ni rahisi kuorodhesha equations hizi katika meza.
Ulinganifu katikaxyz kwa kandaD | Equations sambamba katikauvw kwa ajili ya kandaG | Mipaka kwa ajili ya ushirikiano katikauvw |
---|---|---|
\ (xyz\) kwa kandaD "style="wima align:katikati;" >x = y/2 | \ (uvw\) kwa kandaG "style="vertical-align:katikati;" >u + v = 2v/2 = v | \ (uvw\)” style="wima align:katikati; ">u = 0 |
\ (xyz\) kwa kandaD "style="wima align:katikati;" >x = y/2 | \ (uvw\) kwa kandaG "style="vertical-align:katikati;" >u + v = (2v/2) + 1 = v + 1 | \ (uvw\)” style="wima align:katikati; ">u = 1 |
\ (xyz\) kwa kandaD "style="wima align:katikati;" >y = 0 | \ (uvw\) kwa kandaG "style="vertical-align:katikati;" >2v = 0 | \ (uvw\)” style="wima align:katikati; ">v = 0 |
\ (xyz\) kwa kandaD "style="wima align:katikati;" >y = 4 | \ (uvw\) kwa kandaG "style="vertical-align:katikati;" >2v = 4 | \ (uvw\)” style="wima align:katikati; ">v = 2 |
\ (xyz\) kwa kandaD "style="wima align:katikati;" >z = 0 | \ (uvw\) kwa kandaG "style="vertical-align:katikati;" >3w = 0 | \ (uvw\)” style="wima align:katikati; ">w = 0 |
\ (xyz\) kwa kandaD "style="wima align:katikati;" >z = 3 | \ (uvw\) kwa kandaG "style="vertical-align:katikati;" >3w = 3 | \ (uvw\)” style="wima align:katikati; ">w = 1 |
Sasa tunaweza kuhesabu Jacobian kwa mabadiliko:
J(u,v,w) = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} & \dfrac{\partial x}{\partial w} \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} & \dfrac{\partial y}{\partial w} \\ \dfrac{\partial z}{\partial u} & \dfrac{\partial z}{\partial v} & \dfrac{\partial z}{\partial w} \end{vmatrix} = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{vmatrix} = 6. \nonumber
Kazi ya kuunganishwa inakuwa
f(x,y,z) = x + \frac{z}{3} = u + v + \frac{3w}{3} = u + v + w. \nonumber
Sasa tuko tayari kuweka kila kitu pamoja na kukamilisha tatizo.
\ [kuanza {align*}\ int_0 ^ 3\ int_0 ^ 4\ int_ {y/2} ^ {(y/2) +1}\ kushoto (x +\ frac {z} {3}\ haki) dx\, dy\, dz &=\ int_0 ^ 1\ int_0 ^ 2\ int_0 ^ 1 (u + v + w) |J (u, v, w) |du\, dv\, dw\\ [4pt]
&=\ int_0 ^ 1\ int_0 ^ 2\ int_0 ^ 1 (u + v + w) |6|du\, dv\\ [4pt]
&= 6\ int_0 ^ 1\ int_0 ^ 2\ int_ 0 ^ 1 (u + v + w)\, du\, dv\, dw\\ [4pt]
&= 6\ int_0 ^ 1\ int_0 ^ 2\ kushoto [\ frac {u ^ 2} {2} + vu + wu\ haki] _0 ^ 1\, dv\\, dw\\ [4pt]
&= 6\ int_0 ^ 1\ int_0_0 ^ 2\ kushoto (\ frac {1} {2} + v + u\ haki) dv\, dw\\ [4pt]
&= 6\ int_0 ^ 1\ kushoto [\ frac {1} {2} v +\ Frac {v ^ 2} {2} +\ frac {v ^ 2} + wv\ haki] _0 ^ 2 dw\\ [4pt]
&= 6\ int_0 ^ 1 (3 + 2w)\, dw = 6\ Big [3w + w ^ 2\ Big] _0 ^ 1 = 24. \ mwisho {align*}\]
HebuD kuwa kanda katikaxyz -nafasi inavyoelezwa na1 \leq x \leq 2, \, 0 \leq xy \leq 2, na0 \leq z \leq 1.
Tathmini\iiint_D (x^2 y + 3xyz) \, dx \, dy \, dz kwa kutumia mabadilikou = x, \, v = xy, naw = 3z.
- Kidokezo
-
Fanya meza kwa kila uso wa mikoa na uamuzi juu ya mipaka, kama inavyoonekana katika mfano.
- Jibu
-
\int_0^3 \int_0^2 \int_1^2 \left(\frac{v}{3} + \frac{vw}{3u}\right) du \, dv \, dw = 2 + \ln 8 \nonumber
Dhana muhimu
- MabadilikoT ni kazi inayobadilisha kandaG katika ndege moja (nafasi) kuwaR kanda. katika ndege nyingine (nafasi) kwa mabadiliko ya vigezo.
- MabadilikoT: G \rightarrow R hufafanuliwa kamaT(u,v) = (x,y) (auT(u,v,w) = (x,y,z)) inasemekana kuwa mabadiliko ya moja kwa moja ikiwa hakuna ramani mbili kwenye ramani sawa ya picha.
- Ikiwaf ni kuendeleaR, basi\iint_R f(x,y) dA = \iint_S f(g(u,v), \, h(u,v)) \left|\frac{\partial(x,y)}{\partial (u,v)}\right| du \, dv. \nonumber
- IkiwaF ni kuendeleaR, basi\begin{align*}\iiint_R F(x,y,z) \, dV &= \iiint_G F(g(u,v,w), \, h(u,v,w), \, k(u,v,w) \left|\frac{\partial(x,y,z)}{\partial (u,v,w)}\right| \,du \, dv \, dw \\[4pt] &= \iiint_G H(u,v,w) |J(u,v,w)| \, du \, dv \, dw. \end{align*}
[T] Lamé ovals (au superellipses) ni curves ndege ya\left(\frac{x}{a}\right)^n + \left( \frac{y}{b}\right)^n = 1 milinganyo, ambapo a, b, na n ni chanya namba halisi.
Matumizi CAS kwa graph mikoaR imepakana na Lamé ovals kwaa = 1, \, b = 2, \, n = 4n = 6 mtiririko huo.
pata mabadiliko ambayo ramani eneoR imepakana na mviringo Laméx^4 + y^4 = 1 pia inaitwa squircle na graphed katika takwimu zifuatazo, katika kitengo disk.
c Tumia CAS ili kupata makadirio ya eneo hiloA (R) of the region R bounded by x^4 + y^4 = 1. Round your answer to two decimal places.
[T] Lamé ovals have been consistently used by designers and architects. For instance, Gerald Robinson, a Canadian architect, has designed a parking garage in a shopping center in Peterborough, Ontario, in the shape of a superellipse of the equation \left(\frac{x}{a}\right)^n + \left( \frac{y}{b}\right)^n = 1 with \frac{a}{b} = \frac{9}{7} and n = e. Use a CAS to find an approximation of the area of the parking garage in the case a = 900 yards, b = 700 yards, and n = 2.72 yards.
[Hide Solution]
A(R) \simeq 83,999.2
Chapter Review Exercises
True or False? Justify your answer with a proof or a counterexample.
\int_a^b \int_c^d f(x,y) \, dy \, dx = \int_c^d \int_a^b f(x,y) \, dy \, dx \nonumber
Fubini’s theorem can be extended to three dimensions, as long as f is continuous in all variables.
[Hide solution]
True.
The integral \int_0^{2\pi} \int_0^1 \int_0^1 dz \, dr \, d\theta \nonumber represents the volume of a right cone.
The Jacobian of the transformation for x = u^2 - 2v, \, y = 3v - 2uv is given by -4u^2 + 6u + 4v.
[Hide Solution]
False.
Evaluate the following integrals.
\iint_R (5x^3y^2 - y^2) \, dA, \, R = \{(x,y)|0 \leq x \leq 2, \, 1 \leq y \leq 4\} \nonumber
\iint_D \frac{y}{3x^2 + 1} dA, \, D = \{(x,y) |0 \leq x \leq 1, \, -x \leq y \leq x\} \nonumber
[Hide Solution]
0
\iint_D \sin (x^2 + y^2) dA \nonumber where D is a disk of radius 2 centered at the origin \int_0^1 \int_0^1 xye^{x^2} dx \, dy \nonumber
[Hide Solution]
\frac{1}{4}
\int_{-1}^1 \int_0^z \int_0^{x-z} 6dy \, dx \, dz \nonumber
\iiint_R 3y \, dV, \nonumber where R = \{(x,y,z) |0 \leq x \leq 1, \, 0 \leq y \leq x, \, 0 \leq z \leq \sqrt{9 - y^2}\}
[Hide Solution]
1.475
\int_0^2 \int_0^{2\pi} \int_r^1 r \, dz \, d\theta \, dr \nonumber
\int_0^{2\pi} \int_0^{\pi/2} \int_1^3 \rho^2 \, \sin(\varphi) d\rho \, d\varphi, \, d\theta \nonumber
[Hide Solution]
\frac{52}{3} \pi
\int_0^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{-\sqrt{1-x^2-y^2}}^{\sqrt{1-x^2-y^2}} dz \, dy \, sx \nonumber
For the following problems, find the specified area or volume.
The area of region enclosed by one petal of r = \cos (4\theta).
[Hide Solution]
\frac{\pi}{16}
The volume of the solid that lies between the paraboloid z = 2x^2 + 2y^2 and the plane z = 8.
The volume of the solid bounded by the cylinder x^2 + y^2 = 16 and from z = 1 to z + x = 2.
[Hide Solution]
93.291
The volume of the intersection between two spheres of radius 1, the top whose center is (0,0,0.25) and the bottom, which is centered at (0,0,0).
For the following problems, find the center of mass of the region.
\rho(x,y) = xy on the circle with radius 1 in the first quadrant only.
[Hide Solution]
\left(\frac{8}{15}, \frac{8}{15}\right)
\rho(x,y) = (y + 1) \sqrt{x} in the region bounded by y = e^x, \, y = 0, and x = 1.
\rho(x,y,z) = z on the inverted cone with radius 2 and height 2.
\left(0,0,\frac{8}{5}\right)
The volume an ice cream cone that is given by the solid above z = \sqrt{(x^2 + y^2)} and below z^2 + x^2 + y^2 = z.
The following problems examine Mount Holly in the state of Michigan. Mount Holly is a landfill that was converted into a ski resort. The shape of Mount Holly can be approximated by a right circular cone of height 1100 ft and radius 6000 ft.
If the compacted trash used to build Mount Holly on average has a density 400 \, lb/ft^3, find the amount of work required to build the mountain.
[Hide Solution]
1.452 \pi \times 10^{15} ft-lb
In reality, it is very likely that the trash at the bottom of Mount Holly has become more compacted with all the weight of the above trash. Consider a density function with respect to height: the density at the top of the mountain is still density 400 \, lb/ft^3 and the density increases. Every 100 feet deeper, the density doubles. What is the total weight of Mount Holly?
The following problems consider the temperature and density of Earth’s layers.
[T] The temperature of Earth’s layers is exhibited in the table below. Use your calculator to fit a polynomial of degree 3 to the temperature along the radius of the Earth. Then find the average temperature of Earth. (Hint: begin at 0 in the inner core and increase outward toward the surface)
Layer | Depth from center (km) | Temperature ^oC |
Rocky Crust | 0 to 40 | 0 |
Upper Mantle | 40 to 150 | 870 |
Mantle | 400 to 650 | 870 |
Inner Mantel | 650 to 2700 | 870 |
Molten Outer Core | 2890 to 5150 | 4300 |
Inner Core | 5150 to 6378 | 7200 |
Source: http://www.enchantedlearning.com/sub...h/Inside.shtml
[Hide Solution]
y = -1.238 \times 10^{-7} x^3 + 0.001196 x^2 - 3.666x + 7208; average temperature approximately 2800 ^oC
[T] The density of Earth’s layers is displayed in the table below. Using your calculator or a computer program, find the best-fit quadratic equation to the density. Using this equation, find the total mass of Earth.
Layer | Depth from center (km) | Density (g/cm^3) |
Inner Core | 0 | 12.95 |
Outer Core | 1228 | 11.05 |
Mantle | 3488 | 5.00 |
Upper Mantle | 6338 | 3.90 |
Crust | 6378 | 2.55 |
Source: http://hyperphysics.phy-astr.gsu.edu...rthstruct.html
The following problems concern the Theorem of Pappus (see Moments and Centers of Mass for a refresher), a method for calculating volume using centroids. Assuming a region R, when you revolve around the x-axis the volume is given by V_x = 2\pi A \bar{y}, and when you revolve around the y-axis the volume is given by V_y = 2\pi A \bar{x}, where A is the area of R. Consider the region bounded by x^2 + y^2 = 1 and above y = x + 1.
Find the volume when you revolve the region around the x-axis.
[Hide Solution]
\frac{\pi}{3}
Find the volume when you revolve the region around the y-axis.
Glossary
- Jacobian
-
the Jacobian J (u,v) in two variables is a 2 \times 2 determinant:
J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} \frac{\partial y}{\partial u} \nonumber \\ \frac{\partial x}{\partial v} \frac{\partial y}{\partial v} \end{vmatrix}; \nonumber
the Jacobian J (u,v,w) in three variables is a 3 \times 3 determinant:
J(u,v,w) = \begin{vmatrix} \frac{\partial x}{\partial u} \frac{\partial y}{\partial u} \frac{\partial z}{\partial u} \nonumber \\ \frac{\partial x}{\partial v} \frac{\partial y}{\partial v} \frac{\partial z}{\partial v} \nonumber \\ \frac{\partial x}{\partial w} \frac{\partial y}{\partial w} \frac{\partial z}{\partial w}\end{vmatrix} \nonumber
- one-to-one transformation
- a transformation T : G \rightarrow R defined as T(u,v) = (x,y) is said to be one-to-one if no two points map to the same image point
- planar transformation
- a function T that transforms a region G in one plane into a region R in another plane by a change of variables
- transformation
- a function that transforms a region GG in one plane into a region RR in another plane by a change of variables
Wajacobia
Kumbuka kwamba tulielezea karibu na mwanzo wa sehemu hii kwamba kila kazi ya sehemu lazima iwe na derivatives ya kwanza ya sehemu, ambayo ina maana kwambag_u, g_v, h_u nah_v kuwepo na pia inaendelea. Mabadiliko ambayo ina mali hii inaitwaC^1 mabadiliko (hapaC inaashiria kuendelea). HebuT(u,v) = (g(u,v), \, h(u,v)), wapix = g(u,v) nay = h(u,v) uweC^1 mabadiliko ya moja kwa moja. Tunataka kuona jinsi inabadilisha vitengo vidogoS, \, \Delta u vya mkoa wa mstatili na\Delta v vitengo, katikauv -ndege (Kielelezo\PageIndex{4}).
Tangux = g(u,v) nay = h(u,v), tuna vector nafasir(u,v) = g(u,v)i + h(u,v)j ya picha ya uhakika(u,v). Tuseme kwamba(u_0,v_0) ni kuratibu ya uhakika katika kona ya chini kushoto kwamba mapped kwa(x_0,y_0) = T(u_0,v_0)v = v_0 ramani line Curve picha na kazi vectorr(u,v_0), na vector tangent katika(x_0,y_0) Curve picha ni
r_u = g_u (u_0,v_0)i + h_v (u_0,v_0)j = \frac{\partial x}{\partial u}i + \frac{\partial y}{\partial u}j. \nonumber
Vile vile,u = u_0 ramani za mstari kwenye safu ya picha na kazi ya vectorr(u_0,v), na vector ya tangent(x_0,y_0) kwenye pembe ya picha ni
r_v = g_v (u_0,v_0)i + h_u (u_0,v_0)j = \frac{\partial x}{\partial v}i + \frac{\partial y}{\partial v}j. \nonumber
Sasa, kumbuka kuwa
r_u = \lim_{\Delta u \rightarrow 0} \frac{r (u_0 + \Delta u, v_0) - r ( u_0,v_0)}{\Delta u}\, so \, r (u_0 + \Delta u,v_0) - r(u_0,v_0) \approx \Delta u r_u. \nonumber
Vile vile,
r_v = \lim_{\Delta v \rightarrow 0} \frac{r (u_0,v_0 + \Delta v) - r ( u_0,v_0)}{\Delta v}\, so \, r (u_0,v_0 + \Delta v) - r(u_0,v_0) \approx \Delta v r_v. \nonumber
Hii inaruhusu sisi kukadiria eneo\Delta A la pichaR kwa kutafuta eneo la parallelogram iliyoundwa\Delta vr_v na pande na\Delta ur_u. Kwa kutumia bidhaa msalaba wa wadudu hawa wawili kwa kuongeza k th sehemu kama0, eneo\Delta A la pichaR (rejea Msalaba Bidhaa) ni takriban|\Delta ur_u \times \Delta v r_v| = |r_u \times r_v|\Delta u \Delta v. Katika fomu ya kuamua, bidhaa ya msalaba ni
r_u \times r_v = \begin{vmatrix} i & j & k \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & 0 \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & 0 \end{vmatrix} = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial y}{\partial u} \\ \dfrac{\partial x}{\partial v} & \dfrac{\partial y}{\partial v} \end{vmatrix} k = \left(\frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}\right)k \nonumber
Tangu|k| = 1, tuna
\Delta A \approx |r_u \times r_v| \Delta u \Delta v = \left( \frac{\partial x}{\partial u}\frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}\right) \Delta u \Delta v.
ufafanuzi: Jacobian
Jacobian yaC^1 mabadilikoT(u,v) = (g(u,v), \, h(u,v)) inaashiriaJ(u,v) na inaelezwa na2 \times 2 kuamua
J(u,v) = \left|\frac{\partial (x,y)}{\partial (u,v)} \right| = \begin{vmatrix} \dfrac{\partial x}{\partial u} & \dfrac{\partial y}{\partial u} \\ \dfrac{\partial x}{\partial v} & \dfrac{\partial y}{\partial v} \end{vmatrix} = \left( \frac{\partial x}{\partial u}\frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}\right). \nonumber