Processing math: 100%
Skip to main content
Library homepage
 
Global

10.5: גרף משוואות ריבועיות

מטרות למידה

בסוף פרק זה, תוכל:

  • הכירו את הגרף של משוואה ריבועית בשני משתנים
  • מצא את ציר הסימטריה והקודקוד של פרבולה
  • מצא את היירוט של פרבולה
  • גרף משוואות ריבועיות בשני משתנים
  • לפתור יישומים מקסימליים ומינימליים
להיות מוכן

לפני שתתחיל, קח את חידון המוכנות הזה.

  1. גרף את המשוואה y=3x5 על ידי התוויית נקודות.
    אם פספסת בעיה זו, סקור את [קישור].
  2. הערך 2x2+4x1 מתי x=3
    אם פספסת בעיה זו, סקור את [קישור].
  3. הערך b2a מתי a=13 ו- b = 56
    אם פספסת בעיה זו, עיין ב - [קישור].

הכירו את הגרף של משוואה ריבועית בשני משתנים

יש לנו תרשים משוואות של הטופסAx+By=C. קראנו למשוואות כמו משוואות לינאריות אלה מכיוון שהגרפים שלהם הם קווים ישרים.

כעת, נגרף משוואות של הטופסy=ax2+bx+c. אנו מכנים משוואה מסוג זה משוואה ריבועית בשני משתנים.

הגדרה: משוואה ריבועית בשני משתנים

משוואה ריבועית בשני משתנים, כאשר a, b ו- c הם מספרים ממשיים והיא a0 משוואה של הצורה y=ax2+bx+c

בדיוק כמו שהתחלנו לשרטט משוואות לינאריות על ידי התוויית נקודות, נעשה את אותו הדבר עבור משוואות ריבועיות.

בואו נסתכל תחילה על גרף המשוואה הריבועית. y=x2 אנו נבחר ערכים שלמים של x בין -2 ל -2 ונמצא את ערכי y שלהם. ראה טבלה.

y=x2
x y
0 0
1 1
1 1
2 4
2 4

שימו לב כאשר אנו נותנים x=1 וx=1, קיבלנו את אותו ערך עבור y.

y=x2y=x2y=12y=(1)2y=1y=1

אותו דבר קרה כאשר נתנו x=2 וx=2.

כעת, נתווה את הנקודות כדי להציג את הגרף שלy=x2. ראה איור.

איור זה מציג עקומה בצורת u הנפתחת כלפי מעלה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין 10 ל -10 שלילי. ציר ה- y של המטוס עובר בין 10 ל -10 שלילי. הנקודה הנמוכה ביותר בעקומה נמצאת בנקודה (0, 0). נקודות אחרות על העקומה ממוקמות ב (-2, 4), (-1, 1), (1, 1) ו- (2, 4).

הגרף אינו קו. נתון זה נקרא פרבולה. לכל משוואה ריבועית יש גרף שנראה כך.

בדוגמה תתרגל גרף של פרבולה על ידי התוויית מספר נקודות.

דוגמא 10.5.1

y=x21

תשובה

נגרף את המשוואה על ידי תכנון נקודות.


בחר ערכים שלמים עבור x, החלף אותם במשוואה ופתור עבור y.
 
רשום את הערכים של הזוגות המסודרים בתרשים. .
התווה את הנקודות ואז חבר אותן עם עקומה חלקה. התוצאה תהיה הגרף של המשוואה y=x21 .
דוגמא 10.5.2

גרףy=x2.

תשובה

איור זה מציג עקומה בצורת u הנפתחת כלפי מטה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין 10 ל -10 שלילי. ציר ה- y של המטוס עובר בין 10 ל -10 שלילי. הנקודה הגבוהה ביותר בעקומה היא בנקודה (0, 0). נקודות אחרות על העקומה ממוקמות ב (-2, -4), (-1, -1), (1, -1) ו- (2, -4).

דוגמא 10.5.3

גרףy=x2+1.

תשובה

איור זה מציג עקומה בצורת u הנפתחת כלפי מעלה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין 10 ל -10 שלילי. ציר ה- y של המטוס עובר בין 10 ל -10 שלילי. הנקודה הנמוכה ביותר בעקומה נמצאת בנקודה (0, 1). נקודות אחרות על העקומה ממוקמות ב (-2, 5), (-1, 2), (1, 2) ו- (2, 5).

איך לעשות את המשוואות y=x2 ו y=x21 differ? What is the difference between their graphs? How are their graphs the same?

כל הפרבולות של הטופס y=ax2+bx+c נפתחות כלפי מעלה או מטה. ראה איור.

איור זה מציג שני גרפים זה לצד זה. הגרף בצד שמאל מציג עקומה בצורת u הנפתחת כלפי מעלה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין 10 ל -10 שלילי. ציר ה- y של המטוס עובר בין 10 ל -10 שלילי. הנקודה הנמוכה ביותר בעקומה נמצאת בנקודה (-2, -1). נקודות אחרות על העקומה ממוקמות ב (-3, 0) ו- (-1, 0). מתחת לתרשים נמצאת המשוואה y שווה לריבוע פלוס b x פלוס c מתחת לזה משוואת הגרף, y שווה ל- x בריבוע פלוס 4 x פלוס 3. מתחת לזה אי השוויון גדול מ- 0 שפירושו שהפרבולה נפתחת כלפי מעלה. הגרף בצד ימין מציג עקומה בצורת u הנפתחת כלפי מטה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין 10 ל -10 שלילי. ציר ה- y של המטוס עובר בין 10 ל -10 שלילי. הנקודה הגבוהה ביותר בעקומה היא בנקודה (2, 7). נקודות אחרות על העקומה ממוקמות ב (0, 3) ו- (4, 3). מתחת לתרשים נמצאת המשוואה y שווה לריבוע פלוס b x פלוס c מתחת לזה משוואת הגרף, y שווה לשלילי x בריבוע פלוס 4 x פלוס 3. מתחת לזה אי השוויון פחות מ -0 מה שאומר שהפרבולה נפתחת כלפי מטה.

שימו לב שההבדל היחיד בשתי המשוואות הוא הסימן השלילי לפני x2 במשוואה של הגרף השני באיור. כאשר x2 המונח חיובי, הפרבולה נפתחת כלפי מעלה, וכאשר x2 המונח שלילי, הפרבולה נפתחת כלפי מטה.

הגדרה: אוריינטציה של פרבולה

למשוואה הריבועיתy=ax2+bx+c, אם:

התמונה מציגה שתי הצהרות. בהצהרה הראשונה נכתב "גדול מ- 0, הפרבולה נפתחת כלפי מעלה". הצהרה זו מלווה בתמונה של פרבולה הנפתחת כלפי מעלה. בהצהרה השנייה נכתב "פחות מ -0, הפרבולה נפתחת כלפי מטה". אחרי הצהרה זו מופיעה תמונה של פרבולה נפתחת כלפי מטה.
דוגמא 10.5.4

קבע אם כל פרבולה נפתחת כלפי מעלה או מטה:

  1. y=3x2+2x4
  2. y=6x2+7x9
תשובה
 

.

מכיוון שה- "a" שלילי, הפרבולה תיפתח כלפי מטה.

 

.

מכיוון שה- "a" חיובי, הפרבולה תיפתח כלפי מעלה.

דוגמא 10.5.5

קבע אם כל פרבולה נפתחת כלפי מעלה או מטה:

  1. y=2x2+5x2
  2. y=3x24x+7
תשובה
  1. למעלה
  2. מטה
דוגמא 10.5.6

קבע אם כל פרבולה נפתחת כלפי מעלה או מטה:

  1. y=2x22x3
  2. y=5x22x1
תשובה
  1. מטה
  2. למעלה

מצא את ציר הסימטריה והקודקוד של פרבולה

תסתכל שוב על איור. האם אתה רואה שנוכל לקפל כל פרבולה לשניים ושצד אחד ישכב על גבי השני? 'קו הקיפול' הוא קו סימטריה. אנו קוראים לזה ציר הסימטריה של הפרבולה.

אנו מראים שוב את אותם שני גרפים עם ציר הסימטריה באדום. ראה איור.

איור זה מציג שני גרפים זה לצד זה. הגרף בצד שמאל מציג פרבולה הנפתחת כלפי מעלה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין 10 ל -10 שלילי. ציר ה- y של המטוס עובר בין 10 ל -10 שלילי. הנקודה הנמוכה ביותר בעקומה נמצאת בנקודה (-2, -1). נקודות אחרות על העקומה ממוקמות ב (-3, 0) ו- (-1, 0). כמו כן על הגרף קו אנכי מקווקו שעובר במרכז הפרבולה בנקודה (-2, -1). מתחת לתרשים נמצאת משוואת הגרף, y שווה ל- x בריבוע פלוס 4 x פלוס 3. הגרף בצד ימין מציג פרבולה הנפתחת כלפי מטה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין 10 ל -10 שלילי. ציר ה- y של המטוס עובר בין 10 ל -10 שלילי. הנקודה הגבוהה ביותר בעקומה היא בנקודה (2, 7). נקודות אחרות על העקומה ממוקמות ב (0, 3) ו- (4, 3). כמו כן על הגרף קו אנכי מקווקו שעובר במרכז הפרבולה בנקודה (2, 7). מתחת לתרשים נמצאת משוואת הגרף, y שווה שלילי x בריבוע פלוס 4 x פלוס 3.

ניתן לגזור את משוואת ציר הסימטריה באמצעות הנוסחה הריבועית. נשמיט את הגזירה כאן ונמשיך ישירות לשימוש בתוצאה. המשוואה של ציר הסימטריה של הגרף של y=ax2+bx+c היא x =b2a.

לכן, כדי למצוא את משוואת הסימטריה של כל אחת מהפרבולות שציירנו לעיל, נחליף בנוסחה x =. b2a

האיור מציג את השלבים למציאת ציר הסימטריה לשתי פרבולות. בצד שמאל הצורה הסטנדרטית של משוואה ריבועית שהיא y שווה ל- x בריבוע פלוס b x פלוס c נכתבת מעל המשוואה הנתונה y שווה ל- x בריבוע פלוס 4 x פלוס 3. ציר הסימטריה הוא המשוואה x שווה לשלילה b חלקי הכמות פעמיים א חיבור הערכים של a ו- b מהמשוואה הריבועית הנוסחה הופכת ל- x שווה לשלילה 4 חלקי הכמות 2 פעמים 1, מה שמפשט ל- x שווה לשלילי 2. בצד ימין הצורה הסטנדרטית של משוואה ריבועית שהיא y שווה ל- x בריבוע פלוס b x פלוס c נכתבת מעל המשוואה הנתונה y שווה לשלילי x בריבוע פלוס 4 x פלוס 3. ציר הסימטריה הוא המשוואה x שווה לשלילה b חלקי הכמות פעמיים a חיבור הערכים של a ו- b מהמשוואה הריבועית הנוסחה הופכת ל- x שווה לשלילה 4 חלקי הכמות 2 פעמים -1, מה שמפשט ל- x שווה 2.
איור. האם אלה המשוואות של הקווים האדומים המקווקווים?

הנקודה על הפרבולה שנמצאת על ציר הסימטריה היא הנקודה הנמוכה ביותר או הגבוהה ביותר בפרבולה, תלוי אם הפרבולה נפתחת כלפי מעלה או מטה. נקודה זו נקראת קודקוד הפרבולה.

אנו יכולים למצוא בקלות את הקואורדינטות של הקודקוד, מכיוון שאנו יודעים שהוא נמצא על ציר הסימטריה. המשמעות היא שקואורדינטת ה- x שלה היאb2a. כדי למצוא את קואורדינטת y של הקודקוד, אנו מחליפים את הערך של קואורדינטת x במשוואה הריבועית.

האיור מציג את השלבים למציאת הקודקוד לשתי פרבולות. בצד שמאל נמצאת המשוואה הנתונה y שווה ל- x בריבוע פלוס 4 x פלוס 3. מתחת למשוואה מופיעה ההצהרה "ציר הסימטריה הוא x שווה -2". להלן ההצהרה "קודקוד הוא" לצד ההצהרה נמצא זוג מסודר עם ערך x של -2, זהה לציר הסימטריה, וערך ה- y ריק. מתחת לזה משוכתבת המשוואה המקורית. מתחת למשוואה נמצאת המשוואה עם -2 מחובר לערך x שהוא y שווה -2 בריבוע פלוס 4 פעמים -2 פלוס 3. זה מפשט ל- y שווה -1. להלן ההצהרה "קודקוד הוא (-2, -1)". בצד ימין נמצאת המשוואה הנתונה y שווה שלילי x בריבוע פלוס 4 x פלוס 3. מתחת למשוואה מופיעה ההצהרה "ציר הסימטריה הוא x שווה ל -2". להלן ההצהרה "קודקוד הוא" לצד ההצהרה נמצא זוג מסודר עם ערך x של 2, זהה לציר הסימטריה, וערך ה- y ריק. מתחת לזה משוכתבת המשוואה המקורית. מתחת למשוואה נמצאת המשוואה עם 2 מחוברים לערך x שהוא y שווה לשלילי הכמות 2 בריבוע, בתוספת 4 פעמים 2 פלוס 3. זה מפשט ל- y שווה 7. להלן ההצהרה "קודקוד הוא (2, 7)".

הגדרה: ציר סימטריה וקודקוד של פרבולה

לפרבולה עם משוואהy=ax2+bx+c:

  • ציר הסימטריה של פרבולה הוא הקו x b2a =.
  • הקודקוד נמצא על ציר הסימטריה, כך שקואורדינטת ה - x שלו היא. b2a

כדי למצוא את קואורדינטת y של הקודקוד, אנו מחליפים x = b2a למשוואה הריבועית.

דוגמא 10.5.7

עבור הפרבולה y=3x26x+2 מצא:

  1. ציר הסימטריה ו
  2. הקודקוד.
תשובה
1. .
ציר הסימטריה הוא הקו x = b2a .
החלף את הערכים של a, b במשוואה. .
לפשט איקס=1
  ציר הסימטריה הוא הקו איקס=1
2. .
הקודקוד נמצא על קו הסימטריה, כך שקואורדינטת ה - x שלו תהיה x = 1  
החלף x = 1 למשוואה ופתור עבור y. .
לפשט .
זהו ה- y -קואורדינטה. y=−1
הקודקוד הוא (1, −1).
דוגמא 10.5.8

עבור הפרבולה y=2x28x+1 מצא:

  1. ציר הסימטריה ו
  2. הקודקוד.
תשובה
  1. איקס=2
  2. (2, −7)
דוגמא 10.5.9

עבור הפרבולה y=2x24x3 מצא:

  1. ציר הסימטריה ו
  2. הקודקוד.
תשובה
  1. איקס=1
  2. (1, -5)

מצא את היירוט של פרבולה

כאשר שרטטנו משוואות לינאריות, השתמשנו לעתים קרובות ביירוטים x - ו- y כדי לעזור לנו לשרטט את הקווים. מציאת הקואורדינטות של היירוטים תעזור לנו גם לשרטט פרבולות.

זכור, ביירוט y הערך של x הוא אפס. לכן, כדי למצוא את יירוט y, אנו מחליפים x = 0 במשוואה.

בואו נמצא את יירוט ה- y של שתי הפרבולות המוצגות באיור למטה.

איור זה מציג שני גרפים זה לצד זה. הגרף בצד שמאל מציג פרבולה הנפתחת כלפי מעלה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין 10 ל -10 שלילי. ציר ה- y של המטוס עובר בין 10 ל -10 שלילי. הקודקוד נמצא בנקודה (-2, -1). נקודות אחרות על העקומה ממוקמות ב (-3, 0) ו- (-1, 0). כמו כן על הגרף קו אנכי מקווקו המייצג את ציר הסימטריה. הקו עובר דרך קודקוד ב x שווה -2. מתחת לתרשים נמצאת משוואת הגרף, y שווה ל- x בריבוע פלוס 4 x פלוס 3. להלן ההצהרה "x שווה ל -0". לצד זה משוואת הגרף עם 0 מחובר ל- x שנותן y שווה 0 בריבוע פלוס4 פעמים 0 פלוס 3. זה מפשט ל- y שווה 3. מתחת למשוואה מופיעה ההצהרה "יירוט y (0, 3)". הגרף בצד ימין מציג פרבולה הנפתחת כלפי מטה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין 10 ל -10 שלילי. ציר ה- y של המטוס עובר בין 10 ל -10 שלילי. קודקוד הוא בנקודה (2, 7). נקודות אחרות על העקומה ממוקמות ב (0, 3) ו- (4, 3). כמו כן על הגרף קו אנכי מקווקו המייצג את ציר הסימטריה. הקו עובר דרך קודקוד ב x שווה 2. מתחת לתרשים נמצאת משוואת הגרף, y שווה שלילי x בריבוע פלוס 4 x פלוס 3. להלן ההצהרה "x שווה ל -0". לצד זה משוואת הגרף עם 0 מחובר ל- x שנותן y שווה לכמות שלילית 0 בריבוע פלוס 4 פעמים 0 פלוס 3. זה מפשט ל- y שווה 3. מתחת למשוואה מופיעה ההצהרה "יירוט y (0, 3)".

ביירוט x, הערך של y הוא אפס. כדי למצוא יירוט x, אנו מחליפים y=0 למשוואה. במילים אחרות, נצטרך לפתור את המשוואה 0=ax2+bx+c עבור x.

y=ax2+bx+c0=ax2+bx+c

אבל פתרון משוואות ריבועיות כמו זה הוא בדיוק מה שעשינו קודם בפרק זה.

כעת אנו יכולים למצוא את x -יירוט של שתי הפרבולות המוצגות באיור.

ראשית, נמצא את ה - x -יירוט של פרבולה עם משוואה. y=x2+4x+3

  .
תן y = 0 .
פקטור. .
השתמש במאפיין המוצר אפס. .
לפתור. .
  ה איקס יירוט הם (-1,0) ו- (-3,0).

כעת, נמצא את יירוט ה - x של הפרבולה עם משוואה. y=x2+4x+3

  .
תן y = 0 .
ריבועי זה אינו גורם, ולכן אנו משתמשים בנוסחה הריבועית. .
א=−1, ב=4, ג=3. .
לפשט. .
.
..
  יירוט ה- x הוא ו (2+7,0) (27,0)

נשתמש בקירובים העשרוניים של יירוט ה- x, כך שנוכל לאתר נקודות אלה בתרשים.

(2+7,0)(4.6,0)(27,0)(0.6,0)

האם התוצאות הללו תואמות את הגרפים שלנו? ראה איור.

איור זה מציג שני גרפים זה לצד זה. הגרף בצד שמאל מציג פרבולה הנפתחת כלפי מעלה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין 10 ל -10 שלילי. ציר ה- y של המטוס עובר בין 10 ל -10 שלילי. הקודקוד נמצא בנקודה (-2, -1). שלוש נקודות משורטטות על העקומה ב- (-3, 0), (-1, 0) ו- (0, 3). כמו כן על הגרף קו אנכי מקווקו המייצג את ציר הסימטריה. הקו עובר דרך קודקוד ב x שווה -2. מתחת לתרשים נמצאת משוואת הגרף, y שווה ל- x בריבוע פלוס 4 x פלוס 3. להלן ההצהרה "יירוט y (0, 3)". להלן ההצהרה "יירוט x (-1, 0) ו- (-3, 0)". הגרף בצד ימין מציג פרבולה הנפתחת כלפי מטה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין 10 ל -10 שלילי. ציר ה- y של המטוס עובר בין 10 ל -10 שלילי. קודקוד הוא בנקודה (2, 7). שלוש נקודות משורטטות על העקומה ב- (-0.6, 0), (4.6, 0) ו- (0, 3). כמו כן על הגרף קו אנכי מקווקו המייצג את ציר הסימטריה. הקו עובר דרך קודקוד ב x שווה 2. מתחת לתרשים נמצאת משוואת הגרף, y שווה שלילי x בריבוע פלוס 4 x פלוס 3. להלן ההצהרה "יירוט y (0, 3)". להלן ההצהרה "יירוט x (2 פלוס שורש ריבועי של 7, 0) שווה בערך ל- (4.6, 0) ו- (2 מינוס שורש ריבועי של 7, 0) שווה בערך ל- (-0.6, 0)."
הגדרה: מצא את היירוט של פרבולה

כדי למצוא את היירוט של פרבולה עם משוואה: y=ax2+bx+c

y-interceptx-interceptLetx=0and solve the yLety=0and solve the x

דוגמא 10.5.10

מצא את היירוט של הפרבולה. y=x22x8

תשובה
  .
כדי למצוא את יירוט y, תן x = 0 ולפתור עבור y. .
  כאשר איקס=0, אז y = −8.
יירוט y הוא הנקודה (0, −8).
  .
כדי למצוא את x -יירוט, תן y = 0 ולפתור עבור x. .
לפתור על ידי פקטורינג. .
 

.

מתי y=0, אז איקס=4 או איקס=−2. ה איקס -יירוט הם הנקודות (4,0) ו- (-2,0).
דוגמא 10.5.11

מצא את היירוט של הפרבולה. y=x2+2x8

תשובה

y: (0, -8); איקס: (-4,0), (2,0)

דוגמא 10.5.12

מצא את היירוט של הפרבולה. y=x24x12

תשובה

y: (0, -12); איקס: (6,0), (-2,0)

בפרק זה פתרנו משוואות ריבועיות של הצורהax2+bx+c=0. פתרנו עבור xx והתוצאות היו הפתרונות למשוואה.

כעת אנו בוחנים משוואות ריבועיות בשני משתנים מהצורהy=ax2+bx+c. הגרפים של משוואות אלה הם פרבולות. ה-x -יירוט של הפרבולות מתרחש כאשר y=0.

לדוגמה:

Quadratic equationQuadratic equation in two variabley=x22x15x22x15Lety=0,0=x22x15(x5)(x+3)=00=(x5)(x+3)x5=0,x+3=0x5=0,x+3=0x=5,x=3x=5,x=3(5,0)and(3,0)x-intercepts

הפתרונות של המשוואה הריבועית הם ערכי ה- x של ה- x -יירוט.

מוקדם יותר ראינו שלמשוואות ריבועיות יש 2, 1 או 0 פתרונות. הגרפים שלהלן מציגים דוגמאות לפרבולות לשלושת המקרים הללו. מכיוון שפתרונות המשוואות נותנים את ה - x -יירוט של הגרפים, מספר ה - x -יירוט זהה למספר הפתרונות.

בעבר השתמשנו במפלה כדי לקבוע את מספר הפתרונות של משוואה ריבועית של הטופס. ax2+bx+c=0 כעת, אנו יכולים להשתמש במפלה כדי לומר לנו כמה x -יירוט יש בגרף.

איור זה מציג שלושה גרפים זה לצד זה. הגרף השמאלי ביותר מציג פרבולה הנפתחת כלפי מעלה בתרשים במישור הקואורדינטות x y. קודקוד הפרבולה נמצא ברבע הימני התחתון. מתחת לתרשים נמצא אי השוויון b בריבוע מינוס 4 a c גדול מ- 0. להלן ההצהרה "שני פתרונות". להלן ההצהרה "שני יירוט x". הגרף האמצעי מציג פרבולה הנפתחת כלפי מטה בתרשים במישור הקואורדינטות x y. קודקוד הפרבולה נמצא על ציר ה- x. מתחת לתרשים נמצאת המשוואה b בריבוע מינוס 4 a c שווה 0. להלן ההצהרה "פיתרון אחד". להלן ההצהרה "יירוט x אחד". הגרף הימני ביותר מציג פרבולה הנפתחת כלפי מעלה בתרשים במישור הקואורדינטות x y. קודקוד הפרבולה נמצא ברבע השמאלי העליון. מתחת לתרשים נמצא אי השוויון b בריבוע מינוס 4 a c פחות מ -0. להלן ההצהרה "אין פתרונות אמיתיים". להלן ההצהרה "אין יירוט x".

לפני שתתחיל לפתור את המשוואה הריבועית כדי למצוא את ערכי ה - x -יירוט, ייתכן שתרצה להעריך את המפלה כדי שתדע לכמה פתרונות לצפות.

דוגמא 10.5.13

מצא את היירוט של הפרבולה. y=5x2+x+4

תשובה
  .
כדי למצוא את יירוט y, תן x = 0 ולפתור עבור y. .
.
כאשר x = 0, אז y = 4.
יירוט y הוא הנקודה (0,4).
  .
כדי למצוא את x -יירוט, תן y = 0 ולפתור עבור x. .
מצא את הערך של המפלה כדי לחזות את מספר הפתרונות וכך x -מיירט.

ב^2-4ac

1^2−4⋅5⋅4

1—80

-79

מכיוון שערכו של המפלה הוא שלילי, אין פיתרון אמיתי למשוואה. אין x -יירוט.
דוגמא 10.5.14

מצא את היירוט של הפרבולה. y=3x2+4x+4

תשובה

y: (0,4); x: אף אחד

דוגמא 10.5.15

מצא את היירוט של הפרבולה. y=x24x5

תשובה

y: (0, -5); איקס: (5,0) (−1,0)

דוגמא 10.5.16

מצא את היירוט של הפרבולה. y=4x212x+9

תשובה
  .
כדי למצוא את יירוט y, תן x = 0 ולפתור עבור y. .
.
  כאשר x = 0, אז y = 9.
יירוט y הוא הנקודה (0,9).
  .
כדי למצוא את x -יירוט, תן y = 0 ולפתור עבור x. .
מצא את הערך של המפלה כדי לחזות את מספר הפתרונות וכך x -מיירט.

ב^2-4ac

12 ^ 2−4⋅4⋅9

144—144

0

  מכיוון שערכו של המפלה הוא 0, אין פיתרון אמיתי למשוואה. אז יש אחד x -יירוט.
לפתור את המשוואה על ידי פקטורינג הטרינום המרובע המושלם. .
השתמש במאפיין מוצר אפס. .
לפתור עבור x. .
.
  כאשר y = 0, אז 32 = x.
  יירוט ה- x הוא הנקודה. (32,0)
דוגמא 10.5.17

מצא את היירוט של הפרבולה. y=x212x36.

תשובה

y: (0, −36); איקס: (−6,0)

דוגמא 10.5.18

מצא את היירוט של הפרבולה. y=9x2+12x+4

תשובה

y: (0,4); x: (23,0)

גרף משוואות ריבועיות בשני משתנים

עכשיו, יש לנו את כל החלקים שאנחנו צריכים כדי לשרטט משוואה ריבועית בשני משתנים. אנחנו רק צריכים לחבר אותם יחד. בדוגמה הבאה נראה כיצד לעשות זאת.

כיצד לשרטט משוואה ריבועית בשני משתנים

דוגמא 10.5.19

גרףy=x26x+8.

תשובה

התמונה מציגה את השלבים לתרשים המשוואה הריבועית y שווה ל- x בריבוע מינוס 6 x פלוס 8. שלב 1 הוא לכתוב את המשוואה הריבועית עם y בצד אחד. למשוואה הזו יש כבר y בצד אחד. הערך של a הוא אחד, הערך של b הוא -6 והערך של c הוא 8.שלב 2 הוא לקבוע אם הפרבולה נפתחת כלפי מעלה או מטה. מכיוון ש- a חיובי, הפרבולה נפתחת כלפי מעלה.שלב 3 הוא למצוא את ציר הסימטריה. ציר הסימטריה הוא הקו x שווה לשלילי b חלקי הכמות 2 a חיבור הערכים של b ו- a הנוסחה הופכת ל- x שווה לשלילה -6 חלקי הכמות 2 פעמים 1 שמפשטת ל- x שווה 3. ציר הסימטריה הוא הקו x שווה 3.שלב 4 הוא למצוא את קודקוד. הקודקוד נמצא על ציר הסימטריה. תחליף x שווה 3 לתוך המשוואה ולפתור עבור y. המשוואה היא y שווה x בריבוע מינוס 6 x פלוס 8. החלפת x עם 3 זה הופך להיות y שווה 3 בריבוע מינוס 6 פעמים 3 פלוס 8 אשר מפשט ל y שווה -1. הקודקוד הוא (3, -1).שלב 5 הוא למצוא את יירוט ה- y ולמצוא את הנקודה סימטרית ליירוט y על פני ציר הסימטריה. אנו מחליפים את x שווה 0 למשוואה. המשוואה היא y שווה x בריבוע מינוס 6 x פלוס 8. החלפת x עם 0 זה הופך להיות y שווה 0 בריבוע מינוס 6 פעמים 0 פלוס 8 אשר מפשט ל y שווה 8. יירוט ה- y הוא (0, 8). אנו משתמשים בציר הסימטריה כדי למצוא נקודה סימטרית ליירוט y. יירוט ה- y הוא 3 יחידות שנותרו מציר הסימטריה, x שווה ל -3. נקודה 3 יחידות מימין לציר הסימטריה יש x שווה 6. הנקודה הסימטרית ליירוט y היא (6, 8).שלב 6 הוא למצוא את יירוט ה- x. אנו מחליפים y שווה 0 למשוואה. המשוואה הופכת ל- 0 שווה x בריבוע מינוס 6 x פלוס 8. אנו יכולים לפתור את המשוואה הריבועית הזו על ידי פקטורינג כדי לקבל 0 שווה לכמות x מינוס פי 2 מהכמות x מינוס 4. לפתור כל משוואה כדי לקבל x שווה 2 ו x שווה 4. יירוט ה- x הוא (2, 0) ו- (4, 0).שלב 7 הוא גרף הפרבולה. אנו משרטטים את הקודקוד, היירוט והנקודה הסימטרית ליירוט y. אנו מחברים את חמש הנקודות הללו כדי לשרטט את הפרבולה. הגרף מציג פרבולה שנפתחת כלפי מעלה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין -2 ל -10. ציר ה- y של המטוס עובר בין -3 ל -10. הקודקוד נמצא בנקודה (3, -1). ארבע נקודות משורטטות על העקומה ב (0, 8), (6, 8), (2, 0) ו- (4, 0). כמו כן על הגרף קו אנכי מקווקו המייצג את ציר הסימטריה. הקו עובר דרך קודקוד ב x שווה 3.

דוגמא 10.5.20

גרף את הפרבולה y=x2+2x8.

תשובה

y: (0, -8); x: (2,0), (-4,0);
ציר: x = -1; קודקוד: (-1, -9);

הגרף מציג פרבולה שנפתחת כלפי מעלה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין -10 ל -10. ציר ה- y של המטוס עובר בין -10 ל -10. הקודקוד נמצא בנקודה (-1, -9). שלוש נקודות משורטטות על העקומה ב (0, -8), (2, 0) ו- (-4, 0). כמו כן על הגרף קו אנכי מקווקו המייצג את ציר הסימטריה. הקו עובר דרך קודקוד ב x שווה -1.
דוגמא 10.5.21

גרף את הפרבולהy=x28x+12.

תשובה

y: (0,12); x: (2,0), (6,0);
ציר: x = 4; קודקוד :( 4, -4);

הגרף מציג פרבולה שנפתחת כלפי מעלה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין -10 ל -10. ציר ה- y של המטוס עובר בין -10 ל -10. הקודקוד נמצא בנקודה (4, -4). שלוש נקודות משורטטות על העקומה ב (0, 12), (2, 0) ו- (6, 0). כמו כן על הגרף קו אנכי מקווקו המייצג את ציר הסימטריה. הקו עובר דרך קודקוד ב x שווה 4.
הגדרה: גרף משוואה ריבועית בשני משתנים.
  1. כתוב את המשוואה הריבועית עם yy בצד אחד.
  2. קבע אם הפרבולה נפתחת כלפי מעלה או מטה.
  3. מצא את ציר הסימטריה.
  4. מצא את הקודקוד.
  5. מצא את יירוט y. מצא את הנקודה סימטרית ליירוט y על פני ציר הסימטריה.
  6. מצא את ה - x -יירוט.
  7. גרף את הפרבולה.

הצלחנו למצוא את ה - x -יירוט בדוגמה האחרונה על ידי פקטורינג. אנו מוצאים את ה - x -יירוט בדוגמה הבאה גם על ידי פקטורינג.

דוגמא 10.5.22

גרףy=x2+6x9.

תשובה
המשוואה y יש בצד אחד. .
מכיוון ש- a הוא -1, הפרבולה נפתחת כלפי מטה.

כדי למצוא את ציר הסימטריה, מצאx=b2a.
. .
.
.

ציר הסימטריה הוא איקס=3. הקודקוד נמצא על הקו x = 3.

.

מצא את y כאשר x = 3.
.
.
.
.
הקודקוד הוא (3,0).

.
יירוט y מתרחש כאשר x = 0.
תחליף x = 0.
לפשט.

הנקודה (0, -9) היא שלוש יחידות משמאל לקו הסימטריה.
הנקודה שלוש יחידות מימין לקו הסימטריה היא (6, -9).
נקודה סימטרית ליירוט y היא (6, −9)
.
.
.
(0, -9).
.
ה איקס -יירוט מתרחש כאשר y = 0. .
תחליף y = 0. .
גורם ה- GCF. .
פקטור הטרינום. .
לפתור עבור x. .
חבר את הנקודות כדי לתאר את הפרבולה. .
דוגמא 10.5.23

גרף את הפרבולהy=3x2+12x12.

תשובה

y: (0, -12); x: (2,0);
ציר: x = 2; קודקוד: (2,0);

הגרף מציג פרבולה הנפתחת כלפי מטה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין -10 ל -10. ציר ה- y של המטוס עובר בין -1 ל -10. הקודקוד נמצא בנקודה (2, 0). נקודה אחת נוספת מתווה על העקומה ב (0, -12). כמו כן על הגרף קו אנכי מקווקו המייצג את ציר הסימטריה. הקו עובר דרך קודקוד ב x שווה 2.

דוגמא 10.5.24

גרף את הפרבולהy=25x2+10x+1.

תשובה

y: (0,1); x: (-15,0);
ציר: x = -15; קודקוד :( -15,0);

הגרף מציג פרבולה שנפתחת כלפי מעלה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין -5 ל -5. ציר ה- y של המטוס עובר בין -5 ל -10. הקודקוד נמצא בנקודה (-1 חמישית, 0). נקודה אחת נוספת מתווה על העקומה ב (0, 1). כמו כן על הגרף קו אנכי מקווקו המייצג את ציר הסימטריה. הקו עובר דרך קודקוד ב x שווה -1 חמישית.

עבור הגרף של y=x2+6x9 the vertex and the x -יירוט היו אותה נקודה. זוכרים כיצד המפלה קובע את מספר הפתרונות של משוואה ריבועית? המפלה של המשוואה 0=x2+6x9 is 0, so there is only one solution. That means there is only one x -יירוט, וזה קודקוד הפרבולה.

כמה x -יירוט היית מצפה לראות בגרף של? y=x2+4x+5

דוגמא 10.5.25

גרףy=x2+4x+5.

תשובה
למשוואה יש y בצד אחד. .
מכיוון ש- a הוא 1, הפרבולה נפתחת כלפי מעלה. .
x=b2a. .
.
.
איקס=−2.
.
הקודקוד נמצא על הקו איקס=−2.  
מצא את y כאשר x = −2. .
.
.
.
(-2,1).
.
יירוט y מתרחש כאשר x = 0.
תחליף x = 0.
לפשט.
הנקודה (0,5) היא שתי יחידות מימין לקו הסימטריה.
הנקודה שתי יחידות משמאל לקו הסימטריה היא (-4,5).
.
.
.
(0,5).
.
(-4,5)
ה איקס - יירוט מתרחש כאשר y = 0.
תחליף y = 0.
בדוק את המפלה.
.
.
    b24ac
42415
1620
4
מכיוון שערכו של המפלה הוא שלילי, אין פיתרון ולכן אין יירוט x.
חבר את הנקודות כדי לתאר את הפרבולה. ייתכן שתרצה לבחור שתי נקודות נוספות לדיוק רב יותר.
.
דוגמא 10.5.26

גרף את הפרבולהy=2x26x+5.

תשובה

y: (0,5); x: אין;
ציר:; קודקוד:x=32; (32,12)

הגרף מציג פרבולה שנפתחת כלפי מעלה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין -5 ל -5. ציר ה- y של המטוס עובר בין -5 ל -10. קודקוד הוא בנקודה (3 חצאים, 1 חצי). נקודה אחת נוספת מתווה על העקומה ב (0, 5). כמו כן על הגרף קו אנכי מקווקו המייצג את ציר הסימטריה. הקו עובר דרך קודקוד ב x שווה 3 חצאים.

דוגמא 10.5.27

גרף את הפרבולהy=2x21.

תשובה

y: (0, -1); x: אף אחד;
ציר: x = 0; קודקוד: (0, -1);

הגרף מציג פרבולה שנפתחת כלפי מעלה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין -10 ל -10. ציר ה- y של המטוס עובר בין -10 ל -10. הקודקוד נמצא בנקודה (0, -1). כמו כן על הגרף קו אנכי מקווקו המייצג את ציר הסימטריה. הקו עובר דרך קודקוד ב x שווה 0.

קל למצוא את יירוט y על ידי החלפת איקס=0 במשוואה, לא? אבל היינו צריכים להשתמש בנוסחה הריבועית כדי למצוא את ה - x -יירוט בדוגמה. נשתמש שוב בנוסחה הריבועית בדוגמה הבאה.

דוגמא 10.5.28

גרףy=2x24x3.

תשובה
  .
למשוואה y יש צד אחד.
מכיוון ש- a הוא 2, הפרבולה נפתחת כלפי מעלה.
.
כדי למצוא את ציר הסימטריה, מצא x=b2a .
.
.
הקודקוד הוא x = 1
הקודקוד על הקו איקס=1. .
מצא את y כאשר x = 1 .
.
.
(1, -5)
יירוט y מתרחש כאשר x = 0. .
תחליף x = 0. .
לפשט. .
יירוט ה - y הוא (0, -3)

הנקודה (0, -3) היא יחידה אחת משמאל לקו הסימטריה.
הנקודה יחידה אחת מימין לקו הסימטריה היא (2, -3)
נקודה סימטרית ליירוט y היא (2, -3).
ה איקס -יירוט מתרחש כאשר y = 0 .
תחליף y = 0 .
השתמש בנוסחה הריבועית. .
תחליף בערכים של a, b, c. .
לפשט. .
פשט בתוך הרדיקל. .
לפשט את הרדיקלי. .
גורם ה- GCF. .
הסר גורמים נפוצים. .
כתוב כשתי משוואות. .
הערך משוער. .
 
הערכים המשוערים של x- יירוט הם (2.5,0) ו- (-0.6,0).
גרף את הפרבולה באמצעות הנקודות שנמצאו. .
דוגמא 10.5.29

גרף את הפרבולהy=5x2+10x+3.

תשובה

y: (0,3); איקס: (-1.6,0), (-0.4,0);
ציר: x = -1; קודקוד :( -1, -2);

הגרף מציג פרבולה שנפתחת כלפי מעלה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין -5 ל -5. ציר ה- y של המטוס עובר בין -5 ל -5. הקודקוד נמצא בנקודה (-1, -2). שלוש נקודות נוספות משורטטות על העקומה ב (0, 3), (-1.6, 0), (-0.4, 0). כמו כן על הגרף קו אנכי מקווקו המייצג את ציר הסימטריה. הקו עובר דרך קודקוד ב x שווה -1.

דוגמא 10.5.30

גרף את הפרבולהy=3x26x+5.

תשובה

y: (0,5); x: (0.6,0), (-2.6,0);
ציר: x = -1; קודקוד :( -1,8);

הגרף מציג פרבולה הנפתחת כלפי מטה בתרשים במישור הקואורדינטות x y. ציר ה- x של המטוס עובר בין -10 ל -10. ציר ה- y של המטוס עובר בין -10 ל -10. הקודקוד נמצא בנקודה (-1, 8). שלוש נקודות נוספות משורטטות על העקומה ב (0, 5), (0.6, 0) ו- (-2.6, 0). כמו כן על הגרף קו אנכי מקווקו המייצג את ציר הסימטריה. הקו עובר דרך קודקוד ב x שווה -1.

לפתור יישומים מקסימליים ומינימליים

הידיעה שקודקוד הפרבולה הוא הנקודה הנמוכה ביותר או הגבוהה ביותר של הפרבולה נותנת לנו דרך קלה לקבוע את הערך המינימלי או המקסימלי של משוואה ריבועית. קואורדינטת y של הקודקוד היא ערך y המינימלי של פרבולה שנפתחת כלפי מעלה. זהו ערך ה- y המרבי של פרבולה שנפתחת כלפי מטה. ראה איור.

איור זה מציג שני גרפים זה לצד זה. הגרף השמאלי מציג פרבולה הנפתחת כלפי מטה בתרשים במישור הקואורדינטות x y. קודקוד הפרבולה נמצא ברבע הימני העליון. קודקוד מסומן "מקסימום". הגרף הימני מציג פרבולה שנפתחת כלפי מעלה בתרשים במישור הקואורדינטות x y. קודקוד הפרבולה נמצא ברבע הימני התחתון. קודקוד מסומן "מינימום".
הגדרה: ערכי מינימום או מקסימום של משוואה ריבועית

קואורדינטת y של קודקוד הגרף של משוואה ריבועית היא ה

  • ערך מינימלי של המשוואה הריבועית אם הפרבולה נפתחת כלפי מעלה.
  • הערך המרבי של המשוואה הריבועית אם הפרבולה נפתחת כלפי מטה.
דוגמא 10.5.31

מצא את הערך המינימלי של המשוואה y=x2+2x8 הריבועית.

תשובה
  .
מכיוון ש- a חיובי, הפרבולה נפתחת כלפי מעלה.  
למשוואה הריבועית יש מינימום.  
מצא את ציר הסימטריה. .
.
.
איקס=−1
הקודקוד נמצא על הקו איקס=−1. .
מצא את y כאשר x = −1. .
.
.
(-1, -9)
מכיוון שלפרבולה יש מינימום, קואורדינטת ה - y של הקודקוד היא ערך ה - y המינימלי של המשוואה הריבועית.  
הערך המינימלי של הריבוע הוא -9 והוא מתרחש כאשר איקס=−1.  
הצג את הגרף כדי לאמת את התוצאה. .
דוגמא 10.5.32

מצא את הערך המקסימלי או המינימלי של המשוואה y=x28x+12 הריבועית.

תשובה

הערך המינימלי הוא -4 כאשר x = 4.

דוגמא 10.5.33

מצא את הערך המקסימלי או המינימלי של המשוואה y=4x2+16x11 הריבועית.

תשובה

הערך המרבי הוא 5 כאשר x = 2.

השתמשנו בנוסחה

h=16t2+v0t+h0

כדי לחשב את הגובה ברגליים, h, של אובייקט שנורה כלפי מעלה לאוויר במהירות התחלתית,v0, לאחר t שניות.

נוסחה זו היא משוואה ריבועית במשתנה tt, ולכן הגרף שלה הוא פרבולה. על ידי פתרון הקואורדינטות של הקודקוד, אנו יכולים למצוא כמה זמן ייקח לאובייקט להגיע לגובהו המרבי. לאחר מכן, אנו יכולים לחשב את הגובה המרבי.

דוגמא 10.5.34

המשוואה הריבועית h=16t2+v0t+h0 מדגמנת את גובה הכדורעף ישר כלפי מעלה במהירות 176 רגל לשנייה מגובה של 4 מטר.

  1. כמה שניות ייקח לכדורעף להגיע לגובה המרבי שלו?
  2. מצא את הגובה המרבי של הכדורעף.
תשובה

h=16t2+176t+4

מכיוון ש- a שלילי, הפרבולה נפתחת כלפי מטה.

למשוואה הריבועית יש מקסימום.

1.
t=b2aFind the axis of symmetry.t=1762(16)t=5.5The axis of symmetry ist=5.5The vertex is on the linet=5.5The maximum occurs whent=5.5seconds.

2.

מצא h כאשר t = 5.5. .
.
השתמש במחשבון כדי לפשט. .
  הקודקוד הוא (5.5,488)
מכיוון שלפרבולה יש מקסימום, קואורדינטת ה - h של הקודקוד היא ערך ה- y המרבי של המשוואה הריבועית. הערך המרבי של הריבוע הוא 488 רגל והוא מתרחש כאשר t = 5.5 שניות.
דוגמא 10.5.35

המשוואה הריבועית h=16t2+128t+32 משמשת למציאת גובה אבן שנזרקת כלפי מעלה מגובה של 32 רגל בקצב של 128 רגל לשנייה. כמה זמן ייקח לאבן להגיע לגובה המרבי שלה? מהו הגובה המרבי? תשובות עגולות לעשירית הקרובה ביותר.

תשובה

זה ייקח 4 שניות להגיע לגובה המרבי של 288 רגל.

דוגמא 10.5.36

רקטת צעצוע שנורתה כלפי מעלה מהקרקע בקצב של 208 רגל לשנייה כוללת את המשוואה הריבועית של. h=16t2+208t מתי תגיע הרקטה לגובהה המרבי? מה יהיה הגובה המרבי? תשובות עגולות לעשירית הקרובה ביותר.

תשובה

ייקח 6.5 שניות להגיע לגובה המרבי של 676 רגל.

גש למשאבים מקוונים אלה לקבלת הדרכה נוספת ותרגול גרפים משוואות ריבועיות:

מושגי מפתח

  • הגרף של כל משוואה ריבועית הוא פרבולה.
  • כיוון פרבולה למשוואה y=ax2+bx+c הריבועית, אם
    • a> 0, הפרבולה נפתחת כלפי מעלה.
    • a<0, הפרבולה נפתחת כלפי מטה.
  • ציר סימטריה וקודקוד של פרבולה לפרבולה עם משוואה: y=ax2+bx+c
    • ציר הסימטריה של פרבולה הוא הקוx=b2a.
    • הקודקוד נמצא על ציר הסימטריה, כך שקואורדינטת ה - x שלו היא. b2a
    • כדי למצוא את קואורדינטת y של הקודקוד אנו מחליפים x=b2a במשוואה הריבועית.
  • מצא את יירוטים של פרבולה כדי למצוא את היירוט של פרבולה עם משוואה: y=ax2+bx+c
    y-interceptx-interceptsLetx=0and solve for yLety=0and solve for x
  • לתרשים משוואה ריבועית בשני משתנים
    1. כתוב את המשוואה הריבועית עם yy בצד אחד.
    2. קבע אם הפרבולה נפתחת כלפי מעלה או מטה.
    3. מצא את ציר הסימטריה.
    4. מצא את הקודקוד.
    5. מצא את יירוט y. מצא את הנקודה סימטרית ליירוט y על פני ציר הסימטריה.
    6. מצא את ה - x -יירוט.
    7. גרף את הפרבולה.
  • ערכי מינימום או מקסימום של משוואה ריבועית
    • הקואורדינטה y של קודקוד הגרף של משוואה ריבועית היא
    • ערך מינימלי של המשוואה הריבועית אם הפרבולה נפתחת כלפי מעלה.
    • הערך המרבי של המשוואה הריבועית אם הפרבולה נפתחת כלפי מטה.

רשימת מילים

ציר הסימטריה
ציר הסימטריה הוא הקו האנכי העובר באמצע הפרבולהy=ax2+bx+c.
פרבולה
הגרף של משוואה ריבועית בשני משתנים הוא פרבולה.
משוואה ריבועית בשני משתנים
משוואה ריבועית בשני משתנים, כאשר a, b ו- c הם מספרים ממשיים a0 והיא משוואה של הצורהy=ax2+bx+c.
קודקוד
הנקודה על הפרבולה שנמצאת על ציר הסימטריה נקראת קודקוד הפרבולה; זוהי הנקודה הנמוכה ביותר או הגבוהה ביותר בפרבולה, תלוי אם הפרבולה נפתחת כלפי מעלה או מטה.
x -יירוט של פרבולה
ה - x -יירוט הם הנקודות על הפרבולה היכן. y=0
y -יירוט של פרבולה
יירוט y הוא הנקודה על הפרבולה שבה. x=0