Skip to main content
Global

9.4E: Mazoezi

  • Page ID
    177375
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Mazoezi hufanya kamili

    Kuzidisha mizizi ya Mraba

    Katika mazoezi yafuatayo, kurahisisha.

    Mfano\(\PageIndex{48}\)
    1. \(\sqrt{2}·\sqrt{8}\)
    2. \((3\sqrt{3})(2\sqrt{18})\)
    Jibu
    1. \(44\)
    2. \(18\sqrt{6}\)
    Mfano\(\PageIndex{49}\)
    1. \(\sqrt{6}·\sqrt{6}\)
    2. \((3\sqrt{2})(2\sqrt{32})\)
    Mfano\(\PageIndex{50}\)
    1. \(\sqrt{7}·\sqrt{14}\)
    2. \((4\sqrt{8})(5\sqrt{8})\)
    Jibu
    1. \(7\sqrt{2}\)
    2. 160
    Mfano\(\PageIndex{51}\)
    1. \(\sqrt{6}·\sqrt{12}\)
    2. \((2\sqrt{5})(2\sqrt{10})\)
    Mfano\(\PageIndex{52}\)

    \((5\sqrt{2})(3\sqrt{6})\)

    Jibu

    \(30\sqrt{3}\)

    Mfano\(\PageIndex{53}\)

    \((2\sqrt{3})(4\sqrt{6})\)

    Mfano\(\PageIndex{54}\)

    \((−2\sqrt{3})(3\sqrt{18})\)

    Jibu

    \(−18\sqrt{6}\)

    Mfano\(\PageIndex{55}\)

    \((−4\sqrt{5})(5\sqrt{10})\)

    Mfano\(\PageIndex{56}\)

    \((5\sqrt{6})(−\sqrt{12})\)

    Jibu

    \(−30\sqrt{2}\)

    Mfano\(\PageIndex{57}\)

    \((6\sqrt{2})(−\sqrt{10})\)

    Mfano\(\PageIndex{58}\)

    \((−2\sqrt{7})(−2\sqrt{14})\)

    Jibu

    \(28\sqrt{2}\)

    Mfano\(\PageIndex{59}\)

    \((−2\sqrt{11})(−4\sqrt{22})\)

    Mfano\(\PageIndex{60}\)
    1. \((\sqrt{15y})(\sqrt{5y^3})\)
    2. \((\sqrt{2n^2})(\sqrt{18n^3})\)
    Jibu
    1. \(5y^2\sqrt{3}\)
    2. \(6n^2\sqrt{n}\)
    Mfano\(\PageIndex{61}\)
    1. \((\sqrt{14x^3})(\sqrt{7x^3})\)
    2. \((\sqrt{3q^2})(\sqrt{48q^3})\)
    Mfano\(\PageIndex{62}\)
    1. \((\sqrt{16y^2})(\sqrt{8y^4})\)
    2. \((\sqrt{11s^6})(\sqrt{11s})\)
    Jibu
    1. \(8y^3\sqrt{2}\)
    2. \(11s^3\sqrt{s}\)
    Mfano\(\PageIndex{63}\)

    \((\sqrt{8x^3})(\sqrt{3x})\)
    \((\sqrt{7r})(\sqrt{7r^8})\)

    Mfano\(\PageIndex{64}\)

    \((2\sqrt{5b^3})(4\sqrt{15b})\)

    Jibu

    \(40b^2\sqrt{3}\)

    Mfano\(\PageIndex{65}\)

    \((\sqrt{38c^5})(\sqrt{26c^3})\)

    Mfano\(\PageIndex{66}\)

    \((6\sqrt{3d^3})(4\sqrt{12d^5})\)

    Jibu

    \(144d^4\)

    Mfano\(\PageIndex{67}\)

    \((2\sqrt{5b^3})(4\sqrt{15b})\)

    Mfano\(\PageIndex{68}\)

    \((2\sqrt{5d^6})(3\sqrt{20d^2})\)

    Jibu

    \(60d^4\)

    Mfano\(\PageIndex{69}\)

    \((−2\sqrt{7z^3})(3\sqrt{14z^8})\)

    Mfano\(\PageIndex{70}\)

    \((4\sqrt{2k^5})(−3\sqrt{32k^6})\)

    Jibu

    \(−96k^5\sqrt{k}\)

    Mfano\(\PageIndex{71}\)
    1. \((\sqrt{7})^2\)
    2. \((−\sqrt{15})^2\)
    Mfano\(\PageIndex{72}\)
    1. \((\sqrt{11})^2\)
    2. \((−\sqrt{21})^2\)
    Jibu
    1. 11
    2. 21
    Mfano\(\PageIndex{73}\)
    1. \((\sqrt{19})^2\)
    2. \((−\sqrt{5})^2\)
    Zoezi\(\PageIndex{74}\)
    1. \((\sqrt{23})^2\)
    2. \((−\sqrt{3})^2\)
    Jibu
    1. 23
    2. 3
    Mfano\(\PageIndex{75}\)
    1. \((4\sqrt{11})(−3\sqrt{11})\)
    2. \((5\sqrt{3})^2\)
    Mfano\(\PageIndex{76}\)
    1. \((2\sqrt{13})(−9\sqrt{13})\)
    2. \((6\sqrt{5})^2\)
    Jibu
    1. -234
    2. 180
    Mfano\(\PageIndex{77}\)
    1. \((−3\sqrt{12})(−2\sqrt{6})\)
    2. \( (−4\sqrt{10})^2\)
    Mfano\(\PageIndex{78}\)
    1. \((−7\sqrt{5})(−3\sqrt{10})\)
    2. \( (−2\sqrt{14})^2\)
    Jibu
    1. \(105\sqrt{2}\)
    2. 56

    Tumia Uzidishaji wa Polynomial ili Kuzidisha Mizizi

    Katika mazoezi yafuatayo, kurahisisha.

    Mfano\(\PageIndex{79}\)
    1. \(3(4−\sqrt{3})\)
    2. \(\sqrt{2}(4−\sqrt{6})\)
    Mfano\(\PageIndex{80}\)
    1. \(4(6−\sqrt{11})\)
    2. \(\sqrt{2}(5−\sqrt{12})\)
    Jibu
    1. \(24−4\sqrt{11}\)
    2. \(5\sqrt{2}−2\sqrt{6}\)
    Mfano\(\PageIndex{81}\)
    1. \(5(3−\sqrt{7})\)
    2. \(\sqrt{3}(4−\sqrt{15})\)
    Mfano\(\PageIndex{82}\)
    1. \(7(−2−\sqrt{11})\)
    2. \(\sqrt{7}(6−\sqrt{14})\)
    Jibu
    1. \(−14−7\sqrt{11}\)
    2. \(6\sqrt{7}−7\sqrt{2}\)
    Mfano\(\PageIndex{83}\)
    1. \(\sqrt{7}(5+2\sqrt{7})\)
    2. \(\sqrt{5}(\sqrt{10}+\sqrt{18})\)
    Mfano\(\PageIndex{84}\)
    1. \(\sqrt{11}(8+4\sqrt{11})\)
    2. \(\sqrt{3}(\sqrt{12}+\sqrt{27})\)
    Jibu
    1. \(44+8\sqrt{11}\)
    2. 15
    Mfano\(\PageIndex{85}\)
    1. \(\sqrt{11}(−3+4\sqrt{1})\)
    2. \(\sqrt{3}(\sqrt{15}−\sqrt{18})\)
    Mfano\(\PageIndex{86}\)
    1. \(\sqrt{2}(−5+9\sqrt{2})\)
    2. \(\sqrt{7}(\sqrt{3}−\sqrt{21})\)
    Jibu
    1. \(18−5\sqrt{2}\)
    2. \(\sqrt{21}−7\sqrt{3}\)
    Mfano\(\PageIndex{87}\)

    \((8+\sqrt{3})(2−\sqrt{3})\)

    Mfano\(\PageIndex{88}\)

    \((7+\sqrt{3})(9−\sqrt{3})\)

    Jibu

    \(60+2\sqrt{3}\)

    Mfano\(\PageIndex{89}\)

    \((8−\sqrt{2})(3+\sqrt{2})\)

    Mfano\(\PageIndex{90}\)

    \((9−\sqrt{2})(6+\sqrt{2})\)

    Jibu

    \(52+3\sqrt{2}\)

    Mfano\(\PageIndex{91}\)

    \((3−\sqrt{7})(5−\sqrt{7})\)

    Mfano\(\PageIndex{92}\)

    \((5−\sqrt{7})(4−\sqrt{7})\)

    Jibu

    \(27−9\sqrt{7}\)

    Mfano\(\PageIndex{93}\)

    \((1+3\sqrt{10})(5−2\sqrt{10})\)

    Zoezi\(\PageIndex{94}\)

    \((7−2\sqrt{5})(4+9\sqrt{5})\)

    Jibu

    \(−62+55\sqrt{5}\)

    Mfano\(\PageIndex{95}\)

    \((\sqrt{3}+\sqrt{10})(\sqrt{3}+2\sqrt{10})\)

    Mfano\(\PageIndex{96}\)

    \((\sqrt{11}+\sqrt{5})(\sqrt{11}+6\sqrt{5})\)

    Jibu

    \(41+7\sqrt{55}\)

    Mfano\(\PageIndex{97}\)

    \((2\sqrt{7}−5\sqrt{11})(4\sqrt{7}+9\sqrt{11})\)

    Mfano\(\PageIndex{98}\)

    \((4\sqrt{6}+7\sqrt{13})(8\sqrt{6}−3\sqrt{13})\)

    Jibu

    \(−81+44\sqrt{78}\)

    Mfano\(\PageIndex{99}\)

    \((5−\sqrt{u})(3+\sqrt{u})\)

    Mfano\(\PageIndex{100}\)

    \((9−\sqrt{w})(2+\sqrt{w})\)

    Jibu

    \(18+7\sqrt{w}\)

    Mfano\(\PageIndex{101}\)

    \((7+2\sqrt{m})(4+9\sqrt{m})\)

    Mfano\(\PageIndex{102}\)

    \((6+5\sqrt{n})(11+3\sqrt{n})\)

    Jibu

    \(66+73\sqrt{n}+15n\)

    Mfano\(\PageIndex{103}\)
    1. \((3+\sqrt{5})^2\)
    2. \((2−5\sqrt{3})^2\)
    Mfano\(\PageIndex{104}\)
    1. \((4+\sqrt{11})^2\)
    2. \((3−2\sqrt{5})^2\)
    Jibu
    1. \(27+8\sqrt{11}\)
    2. \(29−12\sqrt{5}\)
    Mfano\(\PageIndex{105}\)
    1. \((9−\sqrt{6})^2\)
    2. \((10+3\sqrt{7})^2\)
    Mfano\(\PageIndex{106}\)
    1. \((5−\sqrt{10})^2\)
    2. \((8+3\sqrt{2})^2\)
    Jibu
    1. \(35−10\sqrt{10}\)
    2. \(82+48\sqrt{2}\)
    Mfano\(\PageIndex{107}\)

    \((3−\sqrt{5})(3+\sqrt{5})\)

    Mfano\(\PageIndex{108}\)

    \((10−\sqrt{3})(10+\sqrt{3})\)

    Jibu

    97

    Mfano\(\PageIndex{109}\)

    \((4+\sqrt{2})(4−\sqrt{2})\)

    Mfano\(\PageIndex{110}\)

    \((7+\sqrt{10})(7−\sqrt{10})\)

    Jibu

    39

    Mfano\(\PageIndex{111}\)

    \((4+9\sqrt{3})(4−9\sqrt{3})\)

    Mfano\(\PageIndex{112}\)

    \((1+8\sqrt{2})(1−8\sqrt{2})\)

    Jibu

    -127

    Mfano\(\PageIndex{113}\)

    \((12−5\sqrt{5})(12+5\sqrt{5})\)

    Mfano\(\PageIndex{114}\)

    \((9−4\sqrt{3})(9+4\sqrt{3})\)

    Jibu

    33

    Mazoezi ya mchanganyiko

    Katika mazoezi yafuatayo, kurahisisha.

    Mfano\(\PageIndex{115}\)

    \(\sqrt{3}·\sqrt{21}\)

    Mfano\(\PageIndex{116}\)

    \((4\sqrt{6})(−\sqrt{18})\)

    Jibu

    \(−24\sqrt{3}\)

    Mfano\(\PageIndex{117}\)

    \((−5+\sqrt{7})(6+\sqrt{21})\)

    Mfano\(\PageIndex{118}\)

    \((−5\sqrt{7})(6\sqrt{21})\)

    Jibu

    \(−210\sqrt{3}\)

    Mfano\(\PageIndex{119}\)

    \((−4\sqrt{2})(2\sqrt{18})\)

    Mfano\(\PageIndex{120}\)

    \((\sqrt{35y^3})(\sqrt{7y^3})\)

    Jibu

    \(7y^3\sqrt{5}\)

    Mfano\(\PageIndex{121}\)

    \((4\sqrt{12x^5})(2\sqrt{6x^3})\)

    Mfano\(\PageIndex{122}\)

    \((\sqrt{29})^2\)

    Jibu

    29

    Mfano\(\PageIndex{123}\)

    \((−4\sqrt{17})(−3\sqrt{17})\)

    Mfano\(\PageIndex{124}\)

    \((−4+\sqrt{17})(−3+\sqrt{17})\)

    Jibu

    \(29−7\sqrt{17}\)

    kila siku Math

    Mfano\(\PageIndex{125}\)

    Msanii anataka kuweka bwawa la kutafakari mraba karibu na staha ya triangular, kama inavyoonekana hapa chini. Staha ya triangular ni pembetatu sahihi, na miguu ya urefu wa miguu 9 na miguu 11, na bwawa litakuwa karibu na hypotenuse.

    1. Tumia Theorem ya Pythagorean ili kupata urefu wa upande wa bwawa. Pindua jibu lako kwa sehemu ya kumi ya karibu ya mguu.
    2. Pata eneo halisi la bwawa.

    Takwimu hii ni mfano wa pool mraba na staha katika sura ya pembetatu haki. pande pool ni x inches muda mrefu wakati hypotenuse staha ni x inches muda mrefu na miguu yake ni tisa na kumi na moja inchi kwa muda mrefu.

    Mfano\(\PageIndex{126}\)

    Msanii anataka kufanya jiwe ndogo katika sura ya msingi wa mraba uliowekwa na pembetatu sahihi, kama inavyoonyeshwa hapa chini. Msingi wa mraba utakuwa karibu na mguu mmoja wa pembetatu. Mguu mwingine wa pembetatu utapima miguu 2 na hypotenuse itakuwa miguu 5.

    1. Tumia Theorem ya Pythagorean ili kupata urefu wa upande wa msingi wa mraba. Pindua jibu lako kwa sehemu ya kumi ya karibu ya mguu.
      Takwimu hii inaonyesha uchongaji wa marumaru kwa namna ya mraba na pembetatu ya kulia inayopumzika juu yake. Pande za mraba ni urefu wa inchi x, miguu ya pembetatu ni x na urefu wa inchi mbili, na hypotenuse ya pembetatu ni urefu wa inchi tano.
    2. Pata eneo halisi la uso wa msingi wa mraba.
    Jibu
    1. Futi 4.6
    2. 21 sq. miguu
    Mfano\(\PageIndex{127}\)

    Bustani ya mraba itafanywa kwa mpaka wa jiwe kwenye makali moja. Ikiwa\(3+\sqrt{10}\) miguu tu ya mawe inapatikana,\((3+\sqrt{10})^2\) kurahisisha kuamua eneo la bustani kubwa zaidi.

    Mfano\(\PageIndex{128}\)

    Bustani itafanywa ili kuwa na sehemu mbili za mraba, sehemu moja na\(\sqrt{5}+\sqrt{6}\) yadi za urefu wa upande na sehemu moja na\(\sqrt{2}+\sqrt{3}\) yadi za urefu wa upande. \((\sqrt{5}+\sqrt{6})(\sqrt{2}+\sqrt{3})\)Kurahisisha kuamua eneo la jumla la bustani.

    Mfano\(\PageIndex{129}\)

    Tuseme sehemu ya tatu itaongezwa kwenye bustani katika zoezi la awali. Sehemu ya tatu ni kuwa na upana wa\(\sqrt{432}\) miguu. Andika maneno ambayo inatoa jumla ya eneo la bustani.

    Mazoezi ya kuandika

    Mfano\(\PageIndex{130}\)
    1. Eleza kwa nini daima\((−\sqrt{n})^2\) ni chanya, kwa\(n \ge 0\).
    2. Eleza kwa nini daima\(−(\sqrt{n})^2\) ni hasi, kwa\(n \ge 0\).
    Jibu
    1. wakati wa mraba hasi, inakuwa chanya
    2. tangu hasi ni pamoja na katika mabano, si squared, na bado hasi
    Mfano\(\PageIndex{131}\)

    Tumia muundo wa mraba wa binomial ili kurahisisha\((3+\sqrt{2})^2\). Eleza hatua zako zote.

    Self Check

    ⓐ Baada ya kukamilisha mazoezi, tumia orodha hii ili kutathmini ujuzi wako wa malengo ya sehemu hii.

    Jedwali hili lina nguzo nne na safu tatu. Nguzo zimeandikwa, “Ninaweza...,” “kwa ujasiri.,” “kwa msaada fulani.,” na “hakuna minus siipate!” Safu chini ya safu ya “Naweza...” kusoma, “kuzidisha mizizi ya mraba.,” na “tumia kuzidisha kwa polynomial kuzidisha mizizi ya mraba.” Safu nyingine chini ya nguzo nyingine ni tupu.

    ⓑ Kwa kiwango cha 1—10, ungewezaje kupima ujuzi wako wa sehemu hii kwa kuzingatia majibu yako kwenye orodha? Unawezaje kuboresha hii?