Skip to main content
Global

8.6E: Mazoezi

  • Page ID
    177685
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Mazoezi hufanya kamili

    Kutatua milinganyo ya busara

    Katika mazoezi yafuatayo, tatua.

    Mfano\(\PageIndex{37}\)

    \(\frac{1}{a}+\frac{2}{5}=\frac{1}{2}\)

    Jibu

    10

    Mfano\(\PageIndex{38}\)

    \(\frac{5}{6}+\frac{3}{b}=\frac{1}{3}\)

    Mfano\(\PageIndex{39}\)

    \(\frac{5}{2}−\frac{1}{c}=\frac{3}{4}\)

    Jibu

    \(\frac{4}{7}\)

    Mfano\(\PageIndex{40}\)

    \(\frac{6}{3}−\frac{2}{d}=\frac{4}{9}\)

    Mfano\(\PageIndex{41}\)

    \(\frac{4}{5}+\frac{1}{4}=\frac{2}{v}\)

    Jibu

    \(\frac{40}{21}\)

    Mfano\(\PageIndex{42}\)

    \(\frac{3}{7}+\frac{2}{3}=\frac{1}{w}\)

    Mfano\(\PageIndex{43}\)

    \(\frac{7}{9}+\frac{1}{x}=\frac{2}{3}\)

    Jibu

    -9

    Mfano\(\PageIndex{44}\)

    \(\frac{3}{8}+\frac{2}{y}=\frac{1}{4}\)

    Mfano\(\PageIndex{45}\)

    \(1−\frac{2}{m}=\frac{8}{m^2}\)

    Jibu

    -2, 4

    Mfano\(\PageIndex{46}\)

    \(1+\frac{4}{n}=\frac{21}{n^2}\)

    Mfano\(\PageIndex{47}\)

    \(1+\frac{9}{p}=−\frac{20}{p^2}\)

    Jibu

    -5, -4

    Mfano\(\PageIndex{48}\)

    \(1−\frac{7}{q}=−\frac{6}{q^2}\)

    Mfano\(\PageIndex{49}\)

    \(\frac{1}{r+3}=\frac{4}{2r}\)

    Jibu

    -6

    Mfano\(\PageIndex{50}\)

    \(\frac{3}{t−6}=\frac{1}{t}\)

    Mfano\(\PageIndex{51}\)

    \(\frac{5}{3v−2}=\frac{7}{4v}\)

    Jibu

    14

    Mfano\(\PageIndex{52}\)

    \(\frac{8}{2w+1}=\frac{3}{w}\)

    Mfano\(\PageIndex{53}\)

    \(\frac{3}{x+4}+\frac{7}{x−4}=\frac{8}{x^2−16}\)

    Jibu

    \(-\frac{4}{5}\)

    Mfano\(\PageIndex{54}\)

    \(\frac{5}{y−9}+\frac{1}{y+9}=\frac{18}{y^2−81}\)

    Mfano\(\PageIndex{55}\)

    \(\frac{8}{z−10}+\frac{7}{z+10}=\frac{5}{z^2−100}\)

    Jibu

    -13

    Mfano\(\PageIndex{56}\)

    \(\frac{9}{a+11}+\frac{6}{a−11}=\frac{7}{a^2−121}\)

    Mfano\(\PageIndex{57}\)

    \(\frac{1}{q+4}−\frac{7}{q−2}=1\)

    Jibu

    hakuna suluhisho

    Mfano\(\PageIndex{58}\)

    \(\frac{3}{r+10}−\frac{4}{r−4}=1\)

    Mfano\(\PageIndex{59}\)

    \(\frac{1}{t+7}−\frac{5}{t−5}=1\)

    Jibu

    -5, -1

    Mfano\(\PageIndex{60}\)

    \(\frac{2}{s+7}−\frac{3}{s−3}=1\)

    Mfano\(\PageIndex{61}\)

    \(\frac{v−10}{v^2−5v+4}=\frac{3}{v−1}−\frac{6}{v−4}\)

    Jibu

    hakuna suluhisho

    Mfano\(\PageIndex{62}\)

    \(\frac{w+8}{w^2−11w+28}=\frac{5}{w−7}+\frac{2}{w−4}\)

    Mfano\(\PageIndex{63}\)

    \(\frac{x−10}{x^2+8x+12}=\frac{3}{x+2}+\frac{4}{x+6}\)

    Jibu

    hakuna suluhisho

    Mfano\(\PageIndex{64}\)

    \(\frac{y−3}{y^2−4y−5}=\frac{1}{y+1}+\frac{8}{y−5}\)

    Mfano\(\PageIndex{65}\)

    \(\frac{z}{16}+\frac{z+2}{4z}=\frac{1}{2z}\)

    Jibu

    -4

    Mfano\(\PageIndex{66}\)

    \(\frac{a}{9}+\frac{a+3}{3a}=\frac{1}{a}\)

    Mfano\(\PageIndex{67}\)

    \(\frac{b+3}{3b}+\frac{b}{24}=\frac{1}{b}\)

    Jibu

    -8

    Mfano\(\PageIndex{68}\)

    \(\frac{c+3}{12c}+\frac{c}{36}=\frac{1}{4c}\)

    Mfano\(\PageIndex{69}\)

    \(\frac{d}{d+3}=\frac{18}{d^2−9}+4\)

    Jibu

    2

    Mfano\(\PageIndex{70}\)

    \(\frac{m}{m+5}=\frac{50}{m^2−25}+6\)

    Mfano\(\PageIndex{71}\)

    \(\frac{n}{n+2}=\frac{8}{n^2−4}+3\)

    Jibu

    1

    Mfano\(\PageIndex{72}\)

    \(\frac{p}{p+7}=\frac{98}{p^2−49}+8\)

    Mfano\(\PageIndex{73}\)

    \(\frac{q}{3q−9}−\frac{3}{4q+12}=\frac{7q^2+6q+63}{24q^2−216}\)

    Jibu

    hakuna suluhisho

    Mfano\(\PageIndex{74}\)

    \(\frac{r}{3r−15}−\frac{1}{4r+20}=\frac{3r^2+17r+40}{12r^2−300}\)

    Mfano\(\PageIndex{75}\)

    \(\frac{s}{2s+6}−\frac{2}{5s+5}=\frac{5s^2−3s−7}{10s^2+40s+30}\)

    Jibu

    hakuna suluhisho

    Mfano\(\PageIndex{76}\)

    \(\frac{t}{6t−12}−\frac{5}{2t+10}=\frac{t^2−23t+70}{12t^2+36t−120}\)

    Tatua Equation ya Mantiki kwa Variable Maalum

    Katika mazoezi yafuatayo, tatua.

    Mfano\(\PageIndex{77}\)

    \(\frac{C}{r}=2π\)kwa r

    Jibu

    \(r=\frac{C}{2π}\)

    Mfano\(\PageIndex{78}\)

    \(\frac{I}{r}=P\)kwa r

    Mfano\(\PageIndex{79}\)

    \(\frac{V}{h}=lw\)kwa h

    Jibu

    \(h=\frac{v}{lw}\)

    Mfano\(\PageIndex{80}\)

    \(\frac{2A}{b}=h\)kwa b

    Mfano\(\PageIndex{81}\)

    \(\frac{v+3}{w−1}=\frac{1}{2}\)kwa w

    Jibu

    w=2v+7

    Mfano\(\PageIndex{82}\)

    \(\frac{x+5}{2−y}=\frac{4}{3}\)kwa y

    Mfano\(\PageIndex{83}\)

    \(a=\frac{b+3}{c−2}\)kwa c

    Jibu

    \(c=\frac{b+3+2a}{a}\)

    Mfano\(\PageIndex{84}\)

    \(m=\frac{n}{2−n}\)kwa n

    Mfano\(\PageIndex{85}\)

    \(\frac{1}{p}+\frac{2}{q}=4\)kwa p

    Jibu

    \(p=\frac{q}{4q−2}\)

    Mfano\(\PageIndex{86}\)

    \(\frac{3}{s}+\frac{1}{t}=2\)kwa s

    Mfano\(\PageIndex{87}\)

    \(\frac{2}{v}+\frac{1}{5}=\frac{1}{2}\)kwa w

    Jibu

    \(w=\frac{15v}{10+v}\)

    Mfano\(\PageIndex{88}\)

    \(\frac{6}{x}+\frac{2}{3}=\frac{1}{y}\)kwa y

    Mfano\(\PageIndex{89}\)

    \(\frac{m+3}{n−2}=\frac{4}{5}\)kwa n

    Jibu

    \(n=\frac{5m+23}{m}\)

    Mfano\(\PageIndex{90}\)

    \(\frac{E}{c}=m^2\)kwa c

    Mfano\(\PageIndex{91}\)

    \(\frac{3}{x}−\frac{5}{y}=\frac{1}{4}\)kwa y

    Jibu

    \(y=\frac{20x}{12−x}\)

    Mfano\(\PageIndex{92}\)

    \(\frac{R}{T}=W\)kwa T

    Mfano\(\PageIndex{93}\)

    \(r=\frac{s}{3−t}\)kwa t

    Jibu

    \(t=\frac{3r−s}{r}\)

    Mfano\(\PageIndex{94}\)

    \(c=\frac{2}{a}+\frac{b}{5}\)kwa

    kila siku Math

    Mfano\(\PageIndex{95}\)

    Uchoraji wa Nyumba Alain anaweza kuchora nyumba katika siku 4. Spiro itachukua siku 7 kuchora nyumba moja. Kutatua equation\(\frac{1}{4}+\frac{1}{7}=\frac{1}{t}\) kwa t kupata idadi ya siku ingekuwa kuchukua yao kwa rangi ya nyumba kama kazi pamoja.

    Jibu

    \(2\frac{6}{11}\)siku

    Mfano\(\PageIndex{96}\)

    Boating Ari anaweza kuendesha mashua yake 18 maili na sasa katika kiasi hicho cha muda inachukua kuendesha 10 maili dhidi ya sasa. Ikiwa kasi ya mashua ni ncha 7, tatua equation\(\frac{18}{7+c}=\frac{10}{7−c}\) kwa c ili kupata kasi ya sasa.

    Mazoezi ya kuandika

    Mfano\(\PageIndex{97}\)

    Kwa nini hakuna suluhisho la equation\(\frac{3}{x−2}=\frac{5}{x−2}\)

    Jibu

    Majibu yatatofautiana.

    Mfano\(\PageIndex{98}\)

    Pete anadhani equation\(\frac{y}{y+6}=\frac{72}{y^2−36}+4\) ina ufumbuzi mbili, y=-6 na y=4. Eleza kwa nini Pete ni makosa.

    Self Check

    ⓐ Baada ya kukamilisha mazoezi, tumia orodha hii ili kutathmini ujuzi wako wa malengo ya sehemu hii.

    Jedwali hili lina safu tatu na nguzo nne. Mstari wa kwanza ni mstari wa kichwa na huandika kila safu. Safu ya kwanza inaitwa “Naweza...”, pili “Kwa uaminifu”, ya tatu “Kwa msaada fulani” na ya mwisho “Hapana - Siipati”. Katika safu ya “Naweza...” safu inayofuata inasoma “kutatua usawa wa busara”. Mstari unaofuata unasoma, “tatua usawa wa busara kwa kutofautiana maalum”. Nguzo zilizobaki ni tupu.

    ⓑ Baada ya kuchunguza orodha hii, utafanya nini ili uwe na ujasiri kwa malengo yote?