Skip to main content
Global

8.4E: Mazoezi

  • Page ID
    177758
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Mazoezi hufanya kamili

    Katika mazoezi yafuatayo, pata LCD.

    Mfano\(\PageIndex{37}\)

    \(\frac{5}{x^2−2x−8}\),\(\frac{2x}{x^2−x−12}\)

    Jibu

    (x-4) (x+2) (x+3)

    Mfano\(\PageIndex{38}\)

    \(\frac{8}{y^2+12y+35}\),\(\frac{3y}{y^2+y−42}\)

    Mfano\(\PageIndex{39}\)

    \(\frac{9}{z^2+2z−8}\),\(\frac{4z}{z^2−49}\)

    Jibu

    (z-1) (z+4) (z+2)

    Mfano\(\PageIndex{39}\)

    \(\frac{6}{a^2+14a+45}\),\(\frac{5a}{a^2−81}\)

    Mfano\(\PageIndex{40}\)

    \(\frac{4}{b^2+6b+9}\),\(\frac{2b}{b^2−2b−15}\)

    Jibu

    (b+3) (b+3) (b-5)

    Mfano\(\PageIndex{41}\)

    \(\frac{5}{c^2−4c+4}\),\(\frac{3c}{c^2−10c+16}\)

    Mfano\(\PageIndex{42}\)

    \(\frac{2}{3d^2+14d−5}\),\(\frac{5d}{3d^2−19d+6}\)

    Jibu

    (3d-1) (d+5) (d-6)

    Mfano\(\PageIndex{44}\)

    \(\frac{3}{5m^2−3m−2}\),\(\frac{6m}{5m^2+17m+6}\)

    Katika mazoezi yafuatayo, andika kama maneno sawa ya busara na LCD iliyotolewa.

    Mfano\(\PageIndex{45}\)

    \(\frac{5}{x^2−2x−8}\),\(\frac{2x}{x^2−x−12}\)
    LCD (x-4) (x+2) (x+3)

    Jibu

    \(\frac{5x+15}{(x−4)(x+2)(x+3)}\),
    \(\frac{2x^2+4x}{(x−4)(x+2)(x+3)}\)

    Mfano\(\PageIndex{46}\)

    \(\frac{8}{y^2+12y+35}\),\(\frac{3y}{y^2+y−42}\)
    LCD (y+7) (y+5) (y-6)

    Mfano\(\PageIndex{47}\)

    \(\frac{9}{z^2+2z−8}\),\(\frac{4z}{z^2−49}\)
    LCD (z-2) (z+4) (z+2)

    Jibu

    \(\frac{9z+18}{(z−2)(z+4)(z+2)}\),
    \(\frac{4z^2+16}{(z−2)(z+4)(z+2)}\)

    Mfano\(\PageIndex{48}\)

    \(\frac{6}{a^2+14a+45}\),\(\frac{5a}{a^2−81}\)
    LCD (a+9) (a+5) (a-9)

    Mfano\(\PageIndex{49}\)

    \(\frac{4}{b^2+6b+9}\),\(\frac{2b}{b^2−2b−15}\)
    LCD (b+3) (b+3) (b-5)

    Jibu

    \(\frac{4b−20}{(b+3)(b+3)(b−5)}\),
    \(\frac{2b^2+6b}{(b+3)(b+3)(b−5)}\)

    Mfano\(\PageIndex{50}\)

    \(\frac{5}{c^2−4c+4}\),\(\frac{3c}{c^2−10c+10}\)
    LCD (c-2) (c-1) (c-8)

    Mfano\(\PageIndex{51}\)

    \(\frac{2}{3d^2+14d−5}\),\(\frac{5d}{3d^2−19d+6}\)
    LCD (3d-1) (d+5) (d-6)

    Jibu

    \(\frac{2d−12}{(3d−1)(d+5)(d−6)}\),
    \(\frac{5d^2+25d}{(3d−1)(d+5)(d−6)}\)

    Mfano\(\PageIndex{52}\)

    \(\frac{3}{5m^2−3m−2}\),\(\frac{6m}{5m^2+17m+6}\)
    LCD (5m+2) (m-1) (m+3)

    Katika mazoezi yafuatayo, ongeza.

    Mfano\(\PageIndex{53}\)

    \(\frac{5}{24}+\frac{11}{36}\)

    Jibu

    \(\frac{37}{72}\)

    Mfano\(\PageIndex{54}\)

    \(\frac{7}{30}+\frac{13}{45}\)

    Mfano\(\PageIndex{55}\)

    \(\frac{9}{20}+\frac{11}{30}\)

    Jibu

    \(\frac{49}{60}\)

    Mfano\(\PageIndex{56}\)

    \(\frac{8}{27}+\frac{7}{18}\)

    Mfano\(\PageIndex{57}\)

    \(\frac{7}{10x^{2}y}+\frac{4}{15xy^2}\)

    Jibu

    \(\frac{21y+8x}{30x^{2}y^2}\)

    Mfano\(\PageIndex{58}\)

    \(\frac{1}{12a^{3}b^2}+\frac{5}{9a^{2}b^3}\)

    Mfano\(\PageIndex{59}\)

    \(\frac{1}{2m}+\frac{7}{8m^{2}n}\)

    Jibu

    \(\frac{mn+14}{16m^{2}n}\)

    Mfano\(\PageIndex{60}\)

    \(\frac{5}{6p^{2}q}+\frac{1}{4p}\)

    Mfano\(\PageIndex{61}\)

    \(\frac{3}{r+4}+\frac{2}{r−5}\)

    Jibu

    \(\frac{5r−7}{(r+4)(r−5)}\)

    Mfano\(\PageIndex{62}\)

    \(\frac{4}{s−7}+\frac{5}{s+3}\)

    Mfano\(\PageIndex{63}\)

    \(\frac{8}{t+5}+\frac{6}{t−5}\)

    Jibu

    \(\frac{14t−10}{(t+5)(t−5)}\)

    Mfano\(\PageIndex{64}\)

    \(\frac{7}{v+5}+\frac{9}{v−5}\)

    Mfano\(\PageIndex{65}\)

    \(\frac{5}{3w−2}+\frac{2}{w+1}\)

    Jibu

    \(\frac{11w+1}{(3w−2)(w+1)}\)

    Mfano\(\PageIndex{66}\)

    \(\frac{4}{2x+5}+\frac{2}{x−14}\)

    Mfano\(\PageIndex{67}\)

    \(\frac{2y}{y+3}+\frac{3}{y−12}\)

    Jibu

    \(\frac{2y^2+y+9}{(y+3)(y−1)}\)

    Mfano\(\PageIndex{68}\)

    \(\frac{3z}{z−2}+\frac{1}{z+5}\)

    Mfano\(\PageIndex{69}\)

    \(\frac{5b}{a^2b−2a^2}+\frac{2b}{b^2−4}\)

    Jibu

    \(\frac{b(5b+10+2a2)}{a^2(b−2)(b+2)}\)

    Mfano\(\PageIndex{70}\)

    \(\frac{4}{cd+3c}+\frac{1}{d^2−9}\)

    Mfano\(\PageIndex{71}\)

    \(\frac{2m}{3m−3}+\frac{5m}{m^2+3m−4}\)

    Jibu

    \(\frac{2m^2+23m}{3(m−1)(m+4)}\)

    Mfano\(\PageIndex{72}\)

    \(\frac{3}{4n+4}+\frac{6}{n^2−n−2}\)

    Mfano\(\PageIndex{73}\)

    \(\frac{3}{n^2+3n−18}+\frac{4n}{n^2+8n+12}\)

    Jibu

    \(\frac{4n^2−9n+6}{(n-3)(n+6)(n+2)}\)

    Mfano\(\PageIndex{74}\)

    \(\frac{6}{q^2−3q−10}+\frac{5q}{q^2−8q+15}\)

    Mfano\(\PageIndex{75}\)

    \(\frac{3r}{r^2+7r+6}+\frac{9}{r^2+4r+3}\)

    Jibu

    \(\frac{3(r^2+6r+18)}{(r+1)(r+6)(r+3)}\)

    Mfano\(\PageIndex{76}\)

    \(\frac{2s}{s^2+2s−8}+\frac{4}{s^2+3s−10}\)

    Katika mazoezi yafuatayo, toa.

    Mfano\(\PageIndex{77}\)

    \(\frac{t}{t−6}−\frac{t−2}{t+6}\)

    Jibu

    \(\frac{2(7t−6)}{(t−6)(t+6)}\)

    Mfano\(\PageIndex{78}\)

    \(\frac{v}{v−3}−\frac{v−6}{v+1}\)

    Mfano\(\PageIndex{79}\)

    \(\frac{w+2}{w+4}−\frac{w}{w−2}\)

    Jibu

    \(\frac{−4(1+w)}{(w+4)(w−2)}\)

    Mfano\(\PageIndex{80}\)

    \(\frac{x−3}{x+6}−\frac{x}{x+3}\)

    Mfano\(\PageIndex{81}\)

    \(\frac{y−4}{y+1}−\frac{1}{y+7}\)

    Jibu

    \(\frac{y^2+2y-29}{(y+1)(y+7)}\)

    Mfano\(\PageIndex{82}\)

    \(\frac{z+8}{z−3}−\frac{z}{z−2}\)

    Mfano\(\PageIndex{83}\)

    \(\frac{5a}{a+3}−\frac{a+2}{a+6}\)

    Jibu

    \(\frac{4a^2+25a−6}{(a+3)(a+6)}\)

    Mfano\(\PageIndex{84}\)

    \(\frac{3b}{b−2}−\frac{b−6}{b−8}\)

    Mfano\(\PageIndex{85}\)

    \(\frac{6c}{c^2−25}−\frac{3}{c+5}\)

    Jibu

    \(\frac{3}{c−5}\)

    Mfano\(\PageIndex{86}\)

    \(\frac{4d}{d^2−81}−\frac{2}{d+9}\)

    Mfano\(\PageIndex{87}\)

    \(\frac{6}{m+6}−\frac{12m}{m^2−36}\)

    Jibu

    \(\frac{−6}{m−6}\)

    Mfano\(\PageIndex{88}\)

    \(\frac{4}{n+4}−\frac{8n}{n^2−16}\)

    Mfano\(\PageIndex{89}\)

    \(\frac{−9p−17}{p^2−4p−21}−\frac{p+1}{7−p}\)

    Jibu

    \(\frac{p+2}{p+3}\)

    Mfano\(\PageIndex{90}\)

    \(\frac{7q+8}{q^2−2q−24}−\frac{q+2}{4−q}\)

    Mfano\(\PageIndex{91}\)

    \(\frac{−2r−16}{r^2+6r−16}−\frac{5}{2−r}\)

    Jibu

    \(\frac{3}{r−2}\)

    Mfano\(\PageIndex{92}\)

    \(\frac{2t−30}{t^2+6t−27}−\frac{2}{3−t}\)

    Mfano\(\PageIndex{93}\)

    \(\frac{5v−2}{v+3}−4\)

    Jibu

    \(\frac{−v−14}{v+3}\)

    Mfano\(\PageIndex{94}\)

    \(\frac{6w+5}{w−1}+2\)

    Mfano\(\PageIndex{95}\)

    \(\frac{2x+7}{10x−1}+3\)

    Jibu

    \(\frac{4(8x+1)}{10x−1}\)

    Mfano\(\PageIndex{96}\)

    \(\frac{8y−4}{5y+2}−6\)

    Katika mazoezi yafuatayo, ongeza na uondoe.

    Mfano\(\PageIndex{97}\)

    \(\frac{5a}{a−2}+\frac{9}{a}−\frac{2a+18}{a^2−2a}\)

    Jibu

    \(\frac{5a^2+7a−36}{a(a−2)}\)

    Mfano\(\PageIndex{98}\)

    \(\frac{2b}{b−5}+\frac{3}{2b}−\frac{2}{b−15}\)

    Mfano\(\PageIndex{99}\)

    \(\frac{c}{c+2}+\frac{5}{c−2}−\frac{10c}{c^2−4}\)

    Jibu

    \(\frac{c−5}{c+2}\)

    Mfano\(\PageIndex{100}\)

    \(\frac{6d}{d−5}+\frac{1}{d+4}−\frac{7d−5}{d^2−d−20}\)

    Katika mazoezi yafuatayo, kurahisisha.

    Mfano\(\PageIndex{101}\)

    \(\frac{6a}{3ab+b^2}+\frac{3a}{9a^2−b^2}\)

    Jibu

    \(\frac{3a(6a−b)}{b(3a+b)(3a−b)}\)

    Mfano\(\PageIndex{102}\)

    \(\frac{2c}{2c+10}+\frac{7c}{c^2+9c+20}\)

    Mfano\(\PageIndex{103}\)

    \(\frac{6d}{d^2−64}−\frac{3}{d−8}\)

    Jibu

    \(\frac{3}{d+8}\)

    Mfano\(\PageIndex{104}\)

    \(\frac{5}{n+7}−\frac{10n}{n^2−49}\)

    Mfano\(\PageIndex{105}\)

    \(\frac{4m}{m^2+6m−7}+\frac{2}{m^2+10m+21}\)

    Jibu

    \(\frac{2(2m^2+7m−1)}{(m+7)(m−1)(m+3)}\)

    Mfano\(\PageIndex{106}\)

    \(\frac{3p}{p^2+4p−12}+\frac{1}{p^2+p−30}\)

    Mfano\(\PageIndex{107}\)

    \(\frac{−5n−5}{n^2+n−6}+\frac{n+1}{2−n}\)

    Jibu

    \(\frac{n+1}{n+3}\)

    Mfano\(\PageIndex{108}\)

    \(\frac{−4b−24}{b^2+b−30}+\frac{b+7}{5−b}\)

    Mfano\(\PageIndex{109}\)

    \(\frac{7}{15p}+\frac{5}{18pq}\)

    Jibu

    \(\frac{42q+25}{90pq}\)

    Mfano\(\PageIndex{110}\)

    \(\frac{3}{20a^2}+\frac{11}{12ab^2}\)

    Mfano\(\PageIndex{111}\)

    \(\frac{4}{x−2}+\frac{3}{x+5}\)

    Jibu

    \(\frac{7(x+2)}{(x−2)(x+5)}\)

    Mfano\(\PageIndex{112}\)

    \(\frac{6}{m+4}+\frac{9}{m−8}\)

    Mfano\(\PageIndex{113}\)

    \(\frac{2q+7}{y+4}−2\)

    Jibu

    \(\frac{17q+2}{3q−1}\)

    Mfano\(\PageIndex{114}\)

    \(\frac{3y−1}{y+4}−2\)

    Mfano\(\PageIndex{115}\)

    \(\frac{z+2}{z−5}−\frac{z}{z+1}\)

    Jibu

    \(\frac{8z+2}{(z−5)(z+1)}\)

    Mfano\(\PageIndex{116}\)

    \(\frac{t}{t−5}−\frac{t−1}{t+5}\)

    Mfano\(\PageIndex{117}\)

    \(\frac{3d}{d+2}+\frac{4}{d}−\frac{d+8}{d^2+2d}\)

    Jibu

    \(\frac{3(d+1)}{d+2}\)

    Mfano\(\PageIndex{118}\)

    \(\frac{2q}{q+5}+\frac{3}{q−3}−\frac{13q+15}{q^2+2q−15}\)

    kila siku Math

    Mfano\(\PageIndex{119}\)

    Mapambo cupcakes Victoria inaweza kupamba amri ya cupcakes kwa ajili ya harusi katika masaa tt, hivyo katika saa 1 anaweza kupamba\(\frac{1}{t}\) ya cupcakes. Itachukua dada yake masaa 3 tena kupamba utaratibu huo wa cupcakes, hivyo katika saa 1 anaweza kupamba\(\frac{1}{t+3}\) ya cupcakes.

    1. Pata sehemu ya kazi ya mapambo ambayo Victoria na dada yake, wakifanya kazi pamoja, wangekamilisha saa moja kwa kuongeza maneno ya busara\(\frac{1}{t}+\frac{1}{t+3}\).
    2. Tathmini jibu lako kwa sehemu (a) wakati t=5.
    Jibu
    1. \(\frac{2t+3}{t(t+3)}\)
    2. \(\frac{13}{40}\)
    Mfano\(\PageIndex{120}\)

    Kayaking Wakati Trina kayaks upriver, inachukua\(\frac{5}{3−c}\) masaa yake kwenda 5 maili, ambapo cc ni kasi ya mto sasa. Inachukua\(\frac{5}{3+c}\) masaa yake kwa Kayak 5 maili chini ya mto.

    1. Kupata kujieleza kwa idadi ya masaa itachukua Trina kwa Kayak 5 maili juu ya mto na kisha kurudi kwa kuongeza\(\frac{5}{3−c}+\frac{5}{3+c}\).
    2. Tathmini jibu lako kwa sehemu (a) wakati c=1 ili kupata idadi ya masaa itachukua Trina ikiwa kasi ya mto wa sasa ni maili 1 kwa saa.

    Mazoezi ya kuandika

    Mfano\(\PageIndex{121}\)

    Felipe anadhani\(\frac{1}{x}+\frac{1}{y}\) ni\(\frac{2}{x+y}\).

    1. Chagua maadili ya namba kwa x na y na tathmini\(\frac{1}{x}+\frac{1}{y}\).
    2. Tathmini\(\frac{2}{x+y}\) kwa maadili sawa ya x na y uliyotumia sehemu (a).
    3. Eleza kwa nini Felipe ni makosa.
    4. Kupata kujieleza sahihi kwa\(\frac{1}{x}+\frac{1}{y}\).
    Jibu

    Majibu yanaweza kutofautiana.

    Mfano\(\PageIndex{122}\)

    Kurahisisha maneno\(\frac{4}{n^2+6n+9}−\frac{1}{n^2−9}\) na kuelezea hatua zako zote.

    Self Check

    ⓐ Baada ya kukamilisha mazoezi, tumia orodha hii ili kutathmini ujuzi wako wa malengo ya sehemu hii.

    Hii ni meza ambayo ina safu tano na nguzo nne. Katika mstari wa kwanza, ambayo ni mstari wa kichwa, seli zinasoma kutoka kushoto kwenda kulia “Ninaweza...,” “Kwa ujasiri,” “Kwa msaada fulani,” na “Hakuna-Siipati!” Safu ya kwanza chini ya “naweza...” inasoma “kupata denominator ya kawaida ya maneno ya busara,” “tafuta maneno sawa ya busara,” “ongeza maneno ya busara na denominators tofauti,” na “Ondoa maneno ya busara na denominators tofauti.” Wengine wa seli ni tupu.

    ⓑ Kwa kiwango cha 1-10, ungewezaje kupima ujuzi wako wa sehemu hii kwa kuzingatia majibu yako kwenye orodha? Unawezaje kuboresha hii?