Skip to main content
Global

8.2E: Mazoezi

  • Page ID
    177747
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Mazoezi hufanya kamili

    Kuzidisha maneno ya busara

    Katika mazoezi yafuatayo, ongeze.

    Mfano\(\PageIndex{40}\)

    \(\frac{12}{16}·\frac{4}{10}\)

    Jibu

    \(\frac{3}{10}\)

    Mfano\(\PageIndex{41}\)

    \(\frac{32}{5}·\frac{16}{24}\)

    Mfano\(\PageIndex{42}\)

    \(\frac{18}{10}·\frac{4}{30}\)

    Jibu

    \(\frac{6}{25}\)

    Mfano\(\PageIndex{43}\)

    \(\frac{21}{36}·\frac{45}{24}\)

    Mfano\(\PageIndex{44}\)

    \(\frac{5x^{2}y^{4}}{12xy^3}·\frac{6x^2}{20y^2}\)

    Jibu

    \(\frac{x^3}{8y}\)

    Mfano\(\PageIndex{45}\)

    \(\frac{8w^{3}y^9}{y^2}·\frac{3y}{4w^4}\)

    Mfano\(\PageIndex{46}\)

    \(\frac{12a^{3}b}{b^2}·\frac{2ab^2}{9b^3}\)

    Jibu

    \(\frac{8a^4}{3b^2}\)

    Mfano\(\PageIndex{47}\)

    \(\frac{4mn^2}{5n^3}·\frac{mn^3}{8m^2}\)

    Mfano\(\PageIndex{48}\)

    \(\frac{5p^2}{p^2−5p−36}·\frac{p^2−16}{10p}\)

    Jibu

    \(\frac{p(p−4)}{2(p−9)}\)

    Mfano\(\PageIndex{49}\)

    \(\frac{3q^2}{q^2+q−6}·\frac{q^2−9}{9q}\)

    Mfano\(\PageIndex{50}\)

    \(\frac{4r}{r^2−3r−10}·\frac{r^2−25}{8r^2}\)

    Jibu

    \(\frac{r+5}{2r(r+2)}\)

    Mfano\(\PageIndex{51}\)

    \(\frac{s}{s^2−9s+14}·\frac{s^2−49}{7s^2}\)

    Mfano\(\PageIndex{52}\)

    \(\frac{x^2−7x}{x^2+6x+9}·\frac{x+3}{4x}\)

    Jibu

    \(\frac{x−7}{4(x+3)}\)

    Mfano\(\PageIndex{53}\)

    \(\frac{2y^2−10y}{y^2+10y+25}·\frac{y+5}{6y}\)

    Mfano\(\PageIndex{54}\)

    \(\frac{z^2+3z}{z^2−3z−4}·\frac{z−4}{z^2}\)

    Jibu

    \(\frac{z+3}{z(z+1)}\)

    Mfano\(\PageIndex{55}\)

    \(\frac{2a^2+8a}{a^2−9a+20}·\frac{a−5}{a^2}\)

    Mfano\(\PageIndex{56}\)

    \(\frac{28−4b}{3b−3}·\frac{b^2+8b−9}{b^2−49}\)

    Jibu

    \(−\frac{4(b+9)}{3(b+7)}\)

    Mfano\(\PageIndex{57}\)

    \(\frac{18c−2c^2}{6c+30}·\frac{c^2+7c+10}{c^2−81}\)

    Mfano\(\PageIndex{58}\)

    \(\frac{35d−7d^2}{d^2+7d}·\frac{d^2+12d+35}{d^2−25}\)

    Jibu

    -7

    Mfano\(\PageIndex{59}\)

    \(\frac{72m−12m^2}{8m+32}·\frac{m^2+10m+24}{m^2−36}\)

    Mfano\(\PageIndex{60}\)

    \(\frac{4n+20}{n^2+n−20}·\frac{n^2−16}{4n+16}\)

    Jibu

    1

    Mfano\(\PageIndex{61}\)

    \(\frac{6p^2−6p}{p^2+7p−18}·\frac{p^2−81}{3p^2−27p}\)

    Mfano\(\PageIndex{62}\)

    \(\frac{q^2−2q}{q^2+6q−16}·\frac{q^2−64}{q^2−8q}\)

    Jibu

    1

    Mfano\(\PageIndex{63}\)

    \(\frac{2r^2−2r}{r^2+4r−5}·\frac{r^2−25}{2r^2−10r}\)

    Gawanya Maneno ya busara

    Katika mazoezi yafuatayo, ugawanye.

    Mfano\(\PageIndex{64}\)

    \(\frac{t−6}{3−t}÷\frac{t^2−9}{t−5}\)

    Jibu

    \(−\frac{2t}{t^3−5t−9}\)

    Mfano\(\PageIndex{65}\)

    \(\frac{v−5}{11−v}÷\frac{v^2−25}{v−11}\)

    Mfano\(\PageIndex{66}\)

    \(\frac{10+w}{w−8}÷\frac{100−w^2}{8−w}\)

    Jibu

    \(−\frac{1}{10−w}\)

    Mfano\(\PageIndex{67}\)

    \(\frac{7+x}{x−6}÷\frac{49−x^2}{x+6}\)

    Mfano\(\PageIndex{68}\)

    \(\frac{27y^2}{3y−21}÷\frac{3y^2+18}{y^2+13y+42}\)

    Jibu

    \(\frac{3y^2(y+6)(y+7)}{(y−7)(y2+6)}\)

    Mfano\(\PageIndex{69}\)

    \(\frac{24z^2}{2z−8}÷\frac{4z−28}{z^2−11z+28}\)

    Mfano\(\PageIndex{70}\)

    \(\frac{16a^2}{4a+36}÷\frac{4a^2−24a}{a^2+4a−45}\)

    Jibu

    \(\frac{a(a−5)}{a−6}\)

    Mfano\(\PageIndex{71}\)

    \(\frac{24b^2}{2b−4}÷\frac{12b^2+36b}{b^2−11b+18}\)

    Mfano\(\PageIndex{72}\)

    \(\frac{3c^2-16c+5}{c^2-25}÷\frac{3c^2-14c-5}{c^2+10c+25}\)

    Jibu

    \(\frac{(3c-1)(c+5)}{(3c+1)(c−5)}\)

    Mfano\(\PageIndex{73}\)

    \(\frac{2d^2+d−3}{d^2−16}÷\frac{2d^2−9d−18}{d^2−8d+16}\)

    Mfano\(\PageIndex{74}\)

    \(\frac{6m^2−13m+2}{9−m^2}÷\frac{6m^2+23m−4}{m^2−6m+9}\)

    Jibu

    \(−\frac{(m−2)(m−3)}{(3+m)(m+4)}\)

    Mfano\(\PageIndex{75}\)

    \(\frac{2n^2−3n−14}{25−n^2}÷\frac{2n^2−13n+21}{n^2−10n+25}\)

    Mfano\(\PageIndex{76}\)

    \(\frac{3s^2}{s^2−16}÷\frac{s^3+4s^2+16s}{s^3−64}\)

    Jibu

    \(\frac{3s}{s+4}\)

    Mfano\(\PageIndex{77}\)

    \(\frac{r^2−9}{15}÷\frac{r^3−27}{5r^2+15r+45}\)

    Mfano\(\PageIndex{78}\)

    \(\frac{p^3+q^3}{3p^2+3pq+3q^2}÷\frac{p^2−q^2}{12}\)

    Jibu

    \(\frac{4(p^2−pq+q^2)}{(p−q)(p^2+pq+q^2)}\)

    Mfano\(\PageIndex{79}\)

    \(\frac{v^3−8w^3}{2v^2+4vw+8w^2}÷\frac{v^2−4w^2}{4}\)

    Mfano\(\PageIndex{80}\)

    \(\frac{t^2−9}{2t}÷(t^2−6t+9)\)

    Jibu

    \(\frac{t+3}{2t(t−3)}\)

    Mfano\(\PageIndex{81}\)

    \(\frac{x^2+3x−10}{4x}÷(2x^2+20x+50)\)

    Mfano\(\PageIndex{82}\)

    \(\frac{2y^2−10yz−48z^2}{2y−1}÷(4y^2−32yz)\)

    Jibu

    \(\frac{y+3z}{2y(2y−1)}\)

    Mfano\(\PageIndex{83}\)

    \(\frac{2m^2−98n^2}{2m+6}÷(m^2−7mn)\)

    Mfano\(\PageIndex{84}\)

    \(\frac{\frac{2a^2−a−21}{5a+20}}{\frac{a^2+7a+12}{a^2+8a+16}}\)

    Jibu

    \(\frac{2a−7}{5}\)

    Mfano\(\PageIndex{85}\)

    \(\frac{\frac{3b^2+2b−8}{12b+18}}{\frac{3b^2+2b−8}{2b^2−7b−15}}\)

    Mfano\(\PageIndex{86}\)

    \(\frac{\frac{12c^2−12}{2c^2−3c+14}}{\frac{c+4}{6c^2−13c+5}}\)

    Jibu

    3 (3c-5)

    Mfano\(\PageIndex{87}\)

    \(\frac{\frac{4d^2+7d−2}{35d+10}}{\frac{d^2−4}{7d^2−12d−4}}\)

    Mfano\(\PageIndex{88}\)

    \(\frac{10m^2+80m}{3m−9}·\frac{m^2+4m−21}{m^2−9m+20}÷\frac{5m^2+10m}{2m−10}\)

    Jibu

    \(\frac{4(m+8)(m+7)}{3(m−4)(m+2)}\)

    Mfano\(\PageIndex{89}\)

    \(\frac{4n^2+32n}{3n+2}·\frac{3n^2−n−2}{n^2+n−30}÷\frac{108n^2−24n}{n+6}\)

    Mfano\(\PageIndex{90}\)

    \(\frac{12p^2+3p}{p+3}÷\frac{p^2+2p−63}{p^2−p−12}·\frac{p−7}{9p^3−9p^2}\)

    Jibu

    \(\frac{(4p+1)(p−7)}{3p(p+9)(p−1)}\)

    Mfano\(\PageIndex{91}\)

    \(\frac{6q+3}{9q^2−9q}÷\frac{q^2+14q+33}{q^2+4q−5}·\frac{4q^2+12q}{12q+6}\)

    kila siku Math

    Mfano\(\PageIndex{92}\)

    Uwezekano Mkurugenzi wa kampuni kubwa ni kuhoji waombaji kwa kazi mbili kufanana. Kama w= idadi ya waombaji wanawake na m= idadi ya waombaji wanaume, basi uwezekano kwamba wanawake wawili ni kuchaguliwa kwa ajili ya kazi ni\(\frac{w}{w+m}·\frac{w−1}{w+m−1}\).

    1. Kurahisisha uwezekano kwa kuzidisha maneno mawili ya busara.
    2. Pata uwezekano kwamba wanawake wawili huchaguliwa wakati w=5 na m=10.
    Jibu
    1. \(\frac{w(w−1)}{(w+m)(w+m−1)}\)
    2. \(\frac{2}{21}\)
    Mfano\(\PageIndex{93}\)

    Eneo la pembetatu Eneo la pembetatu na msingi b na urefu h ni\(\frac{bh}{2}\). Ikiwa pembetatu imetambulishwa ili kufanya pembetatu mpya na msingi na urefu mara tatu kama vile pembetatu ya awali, eneo hilo ni\(\frac{9bh}{2}\). Tumia jinsi eneo la pembetatu mpya linalolinganisha na eneo la pembetatu ya awali kwa kugawa\(\frac{9bh}{2}\) na\(\frac{bh}{2}\).

    Mazoezi ya kuandika

    Mfano\(\PageIndex{94}\)
    1. Kuzidisha\(\frac{7}{4}·\frac{9}{10}\) na kuelezea hatua zako zote.
    2. Kuzidisha\(\frac{n}{n−3}·\frac{9n+3}{n}\) na kuelezea hatua zako zote.
    3. Tathmini jibu lako kwa sehemu (b) wakati n = 7. Je, kupata jibu moja wewe got katika sehemu (a)? Kwa nini au kwa nini?
    Jibu

    Majibu yatatofautiana.

    Mfano\(\PageIndex{95}\)
    1. Gawanya\(\frac{24}{5}÷6\) na kuelezea hatua zako zote.
    2. Gawanya\(\frac{x^2−1}{x}÷(x+1)\) na kuelezea hatua zako zote.
    3. Tathmini jibu lako kwa sehemu (b) wakati x=5. Je, kupata jibu moja wewe got katika sehemu (a)? Kwa nini au kwa nini?

    Self Check

    ⓐ Baada ya kukamilisha mazoezi, tumia orodha hii ili kutathmini ujuzi wako wa malengo ya sehemu hii.

    Picha hapo juu ni meza yenye nguzo nne na safu nne. Mstari wa kwanza ni mstari wa kichwa. Kichwa cha kwanza kinachoitwa “Naweza...”, pili “Kwa ujasiri”, ya tatu, “Kwa msaada fulani”, na ya nne “Hapana — Siipati!”. Katika safu ya kwanza chini ya “Naweza”, mstari unaofuata unasoma maneno ya busara.”, mstari unaofuata unasoma “kugawanya maneno ya busara.”, mstari wa mwisho unasoma “baada ya kuchunguza orodha hii, utafanya nini ili uwe na ujasiri kwa malengo yote?” Nguzo zilizobaki ni tupu.

    ⓑ Baada ya kuchunguza orodha hii, utafanya nini ili uwe na ujasiri kwa malengo yote?