7.4E: Mazoezi
- Page ID
- 177526
Mazoezi hufanya kamili
Factor Perfect Square trinomials
Katika mazoezi yafuatayo, sababu.
\(16y^2+24y+9\)
- Jibu
-
\((4y+3)^2\)
\(25v^2+20v+4\)
\(36s^2+84s+49\)
- Jibu
-
\((6s+7)^2\)
\(49s^2+154s+121\)
\(100x^2−20x+1\)
- Jibu
-
\((10x−1)^2\)
\(64z^2−16z+1\)
\(25n^2−120n+144\)
- Jibu
-
\((5n−12)^2\)
\(4p^2−52p+169\)
\(49x^2−28xy+4y^2\)
- Jibu
-
\((7x−2y)^2\)
\(25r^2−60rs+36s^2\)
\(25n^2+25n+4\)
- Jibu
-
\((5n+4)(5n+1)\)
\(100y^2−20y+1\)
\(64m^2−16m+1\)
- Jibu
-
\((8m-1)^2\)
\(100x^2−25x+1\)
\(10k^2+80k+160\)
- Jibu
-
\(10(k+4)^2\)
\(64x^2−96x+36\)
\(75u^3−30u^{2}v+3uv^2\)
- Jibu
-
\(3u(5u−v)^2\)
\(90p^3+300p^{2}q+250pq^2\)
Katika mazoezi yafuatayo, sababu.
\(x^2−16\)
- Jibu
-
\((x−4)(x+4)\)
\(n^2−9\)
\(25v^2−1\)
- Jibu
-
\((5v−1)(5v+1)\)
\(169q^2−1\)
\(121x^2−144y^2\)
- Jibu
-
\((11x−12y)(11x+12y)\)
\(49x^2−81y^2\)
\(169c^2−36d^2\)
- Jibu
-
\((13c−6d)(13c+6d)\)
\(36p^2−49q^2\)
\(4−49x^2\)
- Jibu
-
\((2−7x)(2+7x)\)
\(121−25s^2\)
\(16z^4−1\)
- Jibu
-
\((2z−1)(2z+1)(4z^2+1)\)
\(m^4−n^4\)
\(5q^2−45\)
- Jibu
-
\(5(q−3)(q+3)\)
\(98r^3−72r\)
\(24p^2+54\)
- Jibu
-
\(6(4p^2+9)\)
\(20b^2+140\)
Kiasi cha Kiasi na Tofauti za Cubes
Katika mazoezi yafuatayo, sababu.
\(x^3+125\)
- Jibu
-
\((x+5)(x^2−5x+25)\)
\(n^3+512\)
\(z^3−27\)
- Jibu
-
\((z−3)(z^2+3z+9)\)
\(v^3−216\)
\(8−343t^3\)
- Jibu
-
\((2−7t)(4+14t+49t^2)\)
\(125−27w^3\)
\(8y^3−125z^3\)
- Jibu
-
\((2y−5z)(4y^2+10yz+25z^2)\)
\(27x^3−64y^3\)
\(7k^3+56\)
- Jibu
-
\(7(k+2)(k^2−2k+4)\)
\(6x^3−48y^3\)
\(2−16y^3\)
- Jibu
-
\(2(1−2y)(1+2y+4y^2)\)
\(−2x^3−16y^3\)
Mazoezi ya mchanganyiko
Katika mazoezi yafuatayo, sababu.
\(64a^2−25\)
- Jibu
-
\((8a−5)(8a+5)\)
\(121x^2−144\)
\(27q^2−3\)
- Jibu
-
\(3(3q−1)(3q+1)\)
\(4p^2−100\)
\(16x^2−72x+81\)
- Jibu
-
\((4x−9)^2\)
\(36y^2+12y+1\)
\(8p^2+2\)
- Jibu
-
\(2(4p^2+1)^2\)
\(81x^2+169\)
\(125−8y^3\)
- Jibu
-
\((5−2y)(25+10y+4y^2)\)
\(27u^3+1000\)
\(45n^2+60n+20\)
- Jibu
-
\(5(3n+2)^2\)
\(48q^3−24q^2+3q\)
kila siku Math
Landscaping Sue na Alan ni mipango ya kuweka\(15\) mguu mraba kuogelea katika mashamba yao. Wao watazunguka bwawa na staha ya tiled, upana sawa pande zote. Ikiwa upana wa staha ni\(w\), eneo la jumla la bwawa na staha hutolewa na trinomial\(4w^2+60w+225\).
- Jibu
-
\((2w+15)^2\)
Ukarabati wa nyumbani Urefu wa ngazi ya mguu kumi na mbili unaweza kufikia upande wa jengo ikiwa msingi wa ngazi ni\(b\) miguu kutoka jengo ni mizizi ya mraba ya binomial\(144−b^2\).
Mazoezi ya kuandika
Kwa nini ilikuwa muhimu kufanya mazoezi kwa kutumia muundo wa mraba wa binomial katika sura ya kuzidisha polynomials?
- Jibu
-
Majibu yanaweza kutofautiana.
Je, unatambua muundo wa mraba wa binomial?
Eleza kwa nini\(n^2+25 \ne (n+5)^2\).
- Jibu
-
Majibu yanaweza kutofautiana.
Maribel ilifanya\(y^2−30y+81\) kazi kama (ya-9) ^2. Unajuaje kwamba hii si sahihi?
Self Check
Baada ya kukamilisha mazoezi, tumia orodha hii ili kutathmini ujuzi wako wa malengo ya sehemu hii.
b Kwa kiwango cha 1—10, ungewezaje kupima ujuzi wako wa sehemu hii kwa kuzingatia majibu yako kwenye orodha? Unawezaje kuboresha hii?