7.3E: Mazoezi
- Page ID
- 177505
Mazoezi hufanya kamili
Kutambua Mkakati wa awali kwa sababu Polynomials kabisa
Katika mazoezi yafuatayo, tambua njia bora ya kutumia ili kuzingatia kila polynomial.
- \(10q^2+50\)
- \(a^2−5a−14\)
- \(uv+2u+3v+6\)
- Jibu
-
- sababu ya GCF, binomial
- tengua FOIL
- sababu kwa kikundi
- \(n^2+10n+24\)
- \(8u^2+16\)
- \(pq+5p+2q+10\)
- \(x^2+4x−21\)
- \(ab+10b+4a+40\)
- \(6c^2+24\)
- Jibu
-
- tengua FOIL
- sababu kwa kikundi
- sababu ya GCF, binomial
- \(20x^2+100\)
- \(uv+6u+4v+24\)
- \(y^2−8y+15\)
Katika mazoezi yafuatayo, factor kabisa.
\(5x^2+35x+30\)
- Jibu
-
\(5(x+1)(x+6)\)
\(12s^2+24s+12\)
\(2z^2−2z−24\)
- Jibu
-
\(2(z−4)(z+3)\)
\(3u^2−12u−36\)
\(7v^2−63v+56\)
- Jibu
-
\(7(v−1)(v−8)\)
\(5w^2−30w+45\)
\(p^3−8p^2−20p\)
- Jibu
-
\(p(p−10)(p+2)\)
\(q^3−5q^2−24q\)
\(3m^3−21m^2+30m\)
- Jibu
-
\(3m(m−5)(m−2)\)
\(11n^3−55n^2+44n\)
\(5x^4+10x^3−75x^2\)
- Jibu
-
\(5x^{2}(x−3)(x+5)\)
\(6y^4+12y^3−48y^2\)
Factor Trinomials Kutumia Jaribio na Hitilafu
Katika mazoezi yafuatayo, sababu.
\(2t^2+7t+5\)
- Jibu
-
\((2t+5)(t+1)\)
\(5y^2+16y+11\)
\(11x^2+34x+3\)
- Jibu
-
\((11x+1)(x+3)\)
\(7b^2+50b+7\)
\(4w^2−5w+1\)
- Jibu
-
\((4w−1)(w−1)\)
\(5x^2−17x+6\)
\(6p^2−19p+10\)
- Jibu
-
\((3p−2)(2p−5)\)
\(21m^2−29m+10\)
\(4q^2−7q−2\)
- Jibu
-
\((4q+1)(q−2)\)
\(10y^2−53y−11\)
\(4p^2+17p−15\)
- Jibu
-
\((4p−3)(p+5)\)
\(6u^2+5u−14\)
\(16x^2−32x+16\)
- Jibu
-
\(16(x−1)(x−1)\)
\(81a^2+153a−18\)
\(30q^3+140q^2+80q\)
- Jibu
-
\(10q(3q+2)(q+4)\)
\(5y^3+30y^2−35y\)
Katika mazoezi yafuatayo, sababu.
\(5n^2+21n+4\)
- Jibu
-
\((5n+1)(n+4)\)
\(8w^2+25w+3\)
\(9z^2+15z+4\)
- Jibu
-
\((3z+1)(3z+4)\)
\(3m^2+26m+48\)
\(4k^2−16k+15\)
- Jibu
-
\((2k−3)(2k−5)\)
\(4q^2−9q+5\)
\(5s^2−9s+4\)
- Jibu
-
\((5s−4)(s−1)\)
\(4r^2−20r+25\)
\(6y^2+y−15\)
- Jibu
-
\((3y+5)(2y−3)\)
\(6p^2+p−22\)
\(2n^2−27n−45\)
- Jibu
-
\((2n+3)(n−15)\)
\(12z^2−41z−11\)
\(3x^2+5x+4\)
- Jibu
-
mkuu
\(4y^2+15y+6\)
\(60y^2+290y−50\)
- Jibu
-
\(10(6y−1)(y+5)\)
\(6u^2−46u−16\)
\(48z^3−102z^2−45z\)
- Jibu
-
\(3z(8z+3)(2z−5)\)
\(90n^3+42n^2−216n\)
\(16s^2+40s+24\)
- Jibu
-
\(8(2s+3)(s+1)\)
\(24p^2+160p+96\)
\(48y^2+12y−36\)
- Jibu
-
\(12(4y−3)(y+1)\)
\(30x^2+105x−60\)
Katika mazoezi yafuatayo, sababu.
\(12y^2−29y+14\)
- Jibu
-
\((4y−7)(3y−2)\)
\(12x^2+36y−24z\)
\(a^2−a−20\)
- Jibu
-
\((a−5)(a+4)\)
\(m^2−m−12\)
\(6n^2+5n−4\)
- Jibu
-
\((2n−1)(3n+4)\)
\(12y^2−37y+21\)
\(2p^2+4p+3\)
- Jibu
-
mkuu
\(3q^2+6q+2\)
\(13z^2+39z−26\)
- Jibu
-
\(13(z^2+3z−2)\)
\(5r^2+25r+30\)
\(x^2+3x−28\)
- Jibu
-
\((x+7)(x−4)\)
\(6u^2+7u−5\)
\(3p^2+21p\)
- Jibu
-
\(3p(p+7)\)
\(7x^2−21x\)
\(6r^2+30r+36\)
- Jibu
-
\(6(r+2)(r+3)\)
\(18m^2+15m+3\)
\(24n^2+20n+4\)
- Jibu
-
\(4(2n+1)(3n+1)\)
\(4a^2+5a+2\)
\(x^2+2x−24\)
- Jibu
-
\((x+6)(x−4)\)
\(2b^2−7b+4\)
kila siku Math
Urefu wa roketi ya toy Urefu wa roketi ya toy ilizinduliwa kwa kasi ya kwanza ya\(80\) miguu kwa pili kutoka kwenye balcony ya jengo la ghorofa ni kuhusiana na idadi ya sekunde\(t\), kwa kuwa inazinduliwa na trinomial\(−16t^2+80t+96\). Sababu hii trinomial.
- Jibu
-
\(−16(t−6)(t+1)\)
Urefu wa mpira beach urefu wa mpira beach kuchafuka up na kasi ya awali ya\(12\) miguu kwa sekunde kutoka urefu wa\(4\) miguu ni kuhusiana na idadi ya sekunde\(t\),, tangu ni kuchafuka na trinomial\(−16t^2+12t+4\). Sababu hii trinomial.
Mazoezi ya kuandika
Orodha, kwa utaratibu, hatua zote unazochukua wakati wa kutumia “\(ac\)” njia ya kuzingatia trinomial ya fomu\(ax^2+bx+c\).
- Jibu
-
Majibu yanaweza kutofautiana.
Njia ya “\(ac\)” inafanana na njia ya “kufuta FOIL”? Je, ni tofauti gani?
Maswali ni nini, ili, kwamba unajiuliza unapoanza kuzingatia polynomial? Unahitaji kufanya nini kama matokeo ya jibu kwa kila swali?
- Jibu
-
Majibu yanaweza kutofautiana.
Katika karatasi yako kuteka chati kwamba muhtasari mkakati factoring. Jaribu kufanya hivyo bila kuangalia kitabu. Unapokamilika, angalia nyuma kwenye kitabu ili uimalize au uhakikishe.
Baada ya kukamilisha mazoezi, tumia orodha hii ili kutathmini ujuzi wako wa malengo ya sehemu hii.
b Orodha hii inakuambia nini kuhusu ujuzi wako wa sehemu hii? Ni hatua gani utachukua ili kuboresha?