1.5: Kuzidisha na Gawanya Integers
- Page ID
- 177924
Mwishoni mwa sehemu hii, utaweza:
- Kuzidisha integers
- Gawanya integers
- Kurahisisha maneno na integers
- Tathmini maneno ya kutofautiana na integers
- Tafsiri misemo ya Kiingereza kwa maneno ya algebraic
- Tumia integers katika programu
Utangulizi wa kina zaidi wa mada yaliyofunikwa katika sehemu hii inaweza kupatikana katika sura ya Prealgebra, integers.
Kuzidisha integers
Kwa kuwa kuzidisha ni shorthand ya hisabati kwa kuongeza mara kwa mara, mfano wetu unaweza kutumika kwa urahisi ili kuonyesha kuzidisha kwa integers. Hebu tuangalie mfano huu halisi ili kuona ni mwelekeo gani tunaoona. Tutatumia mifano sawa ambayo tulitumia kwa kuongeza na kuondoa. Hapa, tutatumia mfano tu kutusaidia kugundua mfano.
Tunakumbuka kwamba\(a\cdot b\) ina maana kuongeza\(a,\, b\) nyakati. Hapa, sisi ni kutumia mfano tu kutusaidia kugundua mfano.
Mifano miwili ijayo ni ya kuvutia zaidi.
Ina maana gani kuzidisha\(5\) na\(−3\)? Ina maana ya kuondoa\(5, 3\) nyakati. Kuangalia uondoaji kama “kuchukua mbali,” inamaanisha kuchukua\(5, 3\) nyakati. Lakini hakuna kitu cha kuchukua, kwa hiyo tunaanza kwa kuongeza jozi zisizo na upande kwenye nafasi ya kazi. Kisha tunachukua mara\(5\) tatu.
Kwa muhtasari:
\[\begin{array} {ll} {5 \cdot 3 = 15} &{-5(3) = -15} \\ {5(-3) = -15} &{(-5)(-3) = 15} \end{array}\]
Kumbuka kwamba kwa kuzidisha namba mbili saini, wakati:
- ishara ni sawa, bidhaa ni chanya.
- ishara ni tofauti, bidhaa ni hasi.
Tutaweka haya yote pamoja katika chati hapa chini.
Kwa kuzidisha namba mbili zilizosainiwa:
Ishara sawa | Bidhaa | Mfano |
---|---|---|
Chanya mbili | Chanya | \(7\cdot 4 = 28\) |
Mbili hasi | Chanya | \(-8(-6) = 48\) |
Ishara tofauti | Bidhaa | Mfano |
---|---|---|
Chanya\(\cdot\) hasi | Hasi | \(7(-9) = -63\) |
\(\cdot\)Chanya hasi | Hasi | \(-5\cdot 10= -50\) |
Kuzidisha:
- \(-9\cdot 3\)
- \(-2(-5)\)
- \(4(-8)\)
- \(7\cdot 6\)
- Jibu
-
- \[\begin{array} {ll} {} &{-9\cdot 3} \\ {\text{Multiply, noting that the signs are different, so the product is negative.}} &{-27} \end{array}\]
- \[\begin{array} {ll} {} &{-2(-5)} \\ {\text{Multiply, noting that the signs are same, so the product is positive.}} &{10} \end{array}\]
- \[\begin{array} {ll} {} &{4(-8)} \\ {\text{Multiply, with different signs.}} &{-32} \end{array}\]
- \[\begin{array} {ll} {} &{7\cdot 6} \\ {\text{Multiply, with different signs.}} &{42} \end{array}\]
Kuzidisha:
- \(-6\cdot 8\)
- \(-4(-7)\)
- \(9(-7)\)
- \(5\cdot 12\)
- Jibu
-
- \(-48\)
- \(28\)
- \(-63\)
- \(60\)
Kuzidisha:
- \(-8\cdot 7\)
- \(-6(-9)\)
- \(7(-4)\)
- \(3\cdot 13\)
- Jibu
-
- \(-56\)
- \(54\)
- \(-28\)
- \(39\)
Wakati sisi kuzidisha idadi na\(1\), matokeo ni idadi sawa. Nini kinatokea wakati sisi kuzidisha idadi na\(−1\)? Hebu kuzidisha idadi chanya na kisha idadi hasi\(−1\) na kuona nini sisi kupata.
\[\begin{array} {lll} {} &{-1\cdot 4} &{-1(-3)}\\ {\text{Multiply.}} &{-4} &{3} \\ {} &{-4\text{ is the opposite of 4.}} &{3\text{ is the opposite of } -3} \end{array}\]
Kila wakati sisi kuzidisha idadi na\(−1\), sisi kupata kinyume chake!
KUZIDISHA KWA -1
\[−1a=−a\]
Kuzidisha idadi kwa\(−1\) anatoa kinyume chake.
Kuzidisha:
- \(-1 \cdot 7\)
- \(-1(-11)\)
- Jibu
-
- \[\begin{array} {ll} {} &{-1\cdot 7} \\ {\text{Multiply, noting that the signs are different}} &{-7} \\ {\text{so the product is negative.}} &{-7\text{ is the opposite of 7.}} \end{array}\]
- \[\begin{array} {ll} {} &{-1(-11)} \\ {\text{Multiply, noting that the signs are different}} &{11} \\ {\text{so the product is positive.}} &{11\text{ is the opposite of -11.}} \end{array}\]
Kuzidisha:
- \(-1\cdot 9\)
- \(-1\cdot(-17)\)
- Jibu
-
- \(-9\)
- \(17\)
Kuzidisha:
- \(-1\cdot 8\)
- \(-1\cdot(-16)\)
- Jibu
-
- \(-8\)
- \(16\)
Kugawanya Integers
Nini kuhusu mgawanyiko? Idara ni operesheni inverse ya kuzidisha. Hivyo,\(15\div 3=5\) kwa sababu\(5 \cdot 3 = 15\). Kwa maneno, maneno haya anasema kwamba\(15\) inaweza kugawanywa katika makundi matatu ya tano kila kwa sababu kuongeza tano mara tatu anatoa\(15\). Angalia baadhi ya mifano ya kuzidisha integers, kufikiri sheria za kugawa integers.
\[\begin{array} {ll} {5\cdot 3 = 15\text{ so }15\div 3 = 5} &{-5(3) = -15\text{ so }-15\div 3 = -5} \\ {(-5)(-3) = 15\text{ so }15\div (-3) = -5} &{5(-3) = -15\text{ so }-15\div (-3) = 5} \end{array}\]
Idara ifuatavyo sheria sawa na kuzidisha!
Kwa mgawanyo wa namba mbili saini, wakati:
- ishara ni sawa, quotient ni chanya.
- ishara ni tofauti, quotient ni hasi.
Na kumbuka kwamba tunaweza daima kuangalia jibu la tatizo mgawanyiko kwa kuzidisha.
Kwa kuzidisha na mgawanyiko wa namba mbili zilizosainiwa:
- Ikiwa ishara ni sawa, matokeo ni chanya.
- Ikiwa ishara ni tofauti, matokeo ni hasi.
Ishara sawa | Matokeo |
---|---|
Chanya mbili | Chanya |
Mbili hasi | Chanya |
Ikiwa ishara ni sawa, matokeo ni chanya. |
Ishara tofauti | Matokeo |
---|---|
Chanya na hasi | Hasi |
Hasi na chanya | Hasi |
Ikiwa ishara ni tofauti, matokeo ni hasi. |
- \(-27\div 3\)
- \(-100\div (-4)\)
- Jibu
-
- \[\begin{array} {ll} {} &{-27 \div 3} \\ {\text{Divide, with different signs, the quotient is}} &{-9} \\ {\text{negative.}} &{} \end{array}\]
- \[\begin{array} {ll} {} &{-100 \div (-4)} \\ {\text{Divide, with signs that are the same the}} &{25} \\ {\text{ quotient is negative.}} &{} \end{array}\]
Gawanya:
- \(-42\div 6\)
- \(-117\div (-3)\)
- Jibu
-
- \(-7\)
- \(39\)
Gawanya:
- \(-63\div 7\)
- \(-115\div (-5)\)
- Jibu
-
- \(-9\)
- \(23\)
Kurahisisha Maneno na Integers
Nini kinatokea wakati kuna idadi zaidi ya mbili katika kujieleza? Utaratibu wa shughuli bado unatumika wakati hasi zinajumuishwa. Kumbuka Mpendwa wangu Shangazi Sally?
Hebu jaribu mifano fulani. Tutaweza kurahisisha maneno ambayo hutumia shughuli zote nne na integers-Aidha, kutoa, kuzidisha, na mgawanyiko. Kumbuka kufuata utaratibu wa shughuli.
Kurahisisha:
\(7(-2)+4(-7)-6\)
- Jibu
-
\[\begin{array} {ll} {} &{7(-2)+4(-7)-6} \\ {\text{Multiply first.}} &{-14+(-28)-6} \\ {\text{Add.}} &{-42-6} \\{\text{Subtract}} &{-48} \end{array}\]
Kurahisisha:
\(8(-3)+5(-7)-4\)
- Jibu
-
\(-63\)
Kurahisisha:
\(9(-3)+7(-8)-1\)
- Jibu
-
\(-84\)
Kurahisisha:
- \((-2)^{4}\)
- \(-2^{4}\)
- Jibu
-
- \[\begin{array} {ll} {} &{(-2)^{4}} \\ {\text{Write in expanded form.}} &{(-2)(-2)(-2)(-2)} \\ {\text{Multiply}} &{4(-2)(-2)} \\{\text{Multiply}} &{-8(-2)} \\{\text{Multiply}} &{16} \end{array}\]
- \[\begin{array} {ll} {} &{-2^{4}} \\ {\text{Write in expanded form. We are asked to find the opposite of }2^{4}.} &{-(2\cdot 2\cdot 2 \cdot 2)} \\ {\text{Multiply}} &{-(4\cdot 2\cdot 2)} \\{\text{Multiply}} &{-(8\cdot 2)} \\{\text{Multiply}} &{-16} \end{array}\]
Angalia tofauti katika sehemu (1) na (2). Katika sehemu (1), exponent ina maana ya kuongeza kile ni katika mabano,\((−2)\) kwa\(4^{th}\) nguvu. Katika sehemu (2), exponent ina maana ya kuongeza tu\(2\) kwa\(4^{th}\) nguvu na kisha kuchukua kinyume.
Kurahisisha:
- \((-3)^{4}\)
- \(-3^{4}\)
- Jibu
-
- \(81\)
- \(-81\)
Kurahisisha:
- \((-7)^{2}\)
- \(-7^{2}\)
- Jibu
-
- \(49\)
- \(-49\)
Mfano unaofuata unatukumbusha kurahisisha ndani ya mabano kwanza.
Kurahisisha:
\(12-3(9 - 12)\)
- Jibu
-
\[\begin{array} {llll} {} &{12-3(9 - 12)} \\ {\text{Subtract parentheses first}} &{12-3(-3)} \\ {\text{Multiply.}} &{12-(-9)} \\{\text{Multiply}} &{-(8\cdot 2)} \\{\text{Subtract}} &{21} \end{array}\]
Kurahisisha:
\(17 - 4(8 - 11)\)
- Jibu
-
\(29\)
Kurahisisha:
\(16 - 6(7 - 13)\)
- Jibu
-
\(52\)
Kurahisisha:
\(8(-9)\div (-2)^{3}\)
- Jibu
-
\[\begin{array} {ll} {} &{8(-9)\div(-2)^{3}} \\ {\text{Exponents first}} &{8(-9)\div(-8)} \\ {\text{Multiply.}} &{-72\div (-8)} \\{\text{Divide}} &{9} \end{array}\]
Kurahisisha:
\(12(-9)\div (-3)^{3}\)
- Jibu
-
\(4\)
Kurahisisha:
\(18(-4)\div (-2)^{3}\)
- Jibu
-
\(9\)
Kurahisisha:
\(-30\div 2 + (-3)(-7)\)
- Jibu
-
\[\begin{array} {ll} {} &{-30\div 2 + (-3)(-7)} \\ {\text{Multiply and divide left to right, so divide first.}} &{-15+(-3)(-7)} \\ {\text{Multiply.}} &{-15+ 21} \\{\text{Add}} &{6} \end{array}\]
Kurahisisha:
\(-27\div 3 + (-5)(-6)\)
- Jibu
-
\(21\)
Kurahisisha:
\(-32\div 4 + (-2)(-7)\)
- Jibu
-
\(6\)
Tathmini Maneno ya kutofautiana na Integers
Kumbuka kwamba kutathmini maneno ina maana ya kubadilisha idadi kwa variable katika kujieleza. Sasa tunaweza kutumia namba hasi pamoja na idadi nzuri.
Wakati\(n=−5\), tathmini:
- \(n+1\)
- \(−n+1\).
- Jibu
-
- \[\begin{array} {ll} {} &{n+ 1} \\ {\text{Substitute}-5\text{ for } n} &{-5+1} \\ {\text{Simplify.}} &{-4} \end{array}\]
- \[\begin{array} {ll} {} &{-n+ 1} \\ {\text{Substitute}-5\text{ for } n} &{-(-5)+1} \\ {\text{Simplify.}} &{-4} \\{\text{Add.}} &{6} \end{array}\]
Wakati\(n=−8\), tathmini:
- \(n+2\)
- \(−n+2\).
- Jibu
-
- \(-6\)
- \(10\)
Wakati\(y=−9\), tathmini:
- \(y+8\)
- \(−y+8\).
- Jibu
-
- \(-1\)
- \(17\)
Tathmini\((x+y)^{2}\) wakati\(x = -18\) na\(y = 24\).
- Jibu
-
\[\begin{array} {ll} {} &{(x+y)^{2}} \\ {\text{Substitute }-18\text{ for }x \text{ and } 24 \text{ for } y} &{(-18 + 24)^{2}} \\ {\text{Add inside parentheses}} &{(6)^{2}} \\{\text{Simplify.}} &{36} \end{array}\]
Tathmini\((x+y)^{2}\) wakati\(x = -15\) na\(y = 29\).
- Jibu
-
\(196\)
Tathmini\((x+y)^{3}\) wakati\(x = -8\) na\(y = 10\).
- Jibu
-
\(8\)
Tathmini\(20 -z \) wakati
- \(z = 12\)
- \(z = -12\)
- Jibu
-
- \[\begin{array} {ll} {} &{20 - z} \\ {\text{Substitute }12\text{ for }z.} &{20 - 12} \\ {\text{Subtract}} &{8} \end{array}\]
- \[\begin{array} {ll} {} &{20 - z} \\ {\text{Substitute }-12\text{ for }z.} &{20 - (-12)} \\ {\text{Subtract}} &{32} \end{array}\]
Tathmini\(17 - k\) wakati
- \(k = 19\)
- \(k = -19\)
- Jibu
-
- \(-2\)
- \(36\)
Tathmini\(-5 - b\) wakati
- \(b = 14\)
- \(b = -14\)
- Jibu
-
- \(-19\)
- \(9\)
Tathmini:
\(2x^{2} + 3x + 8\)lini\(x = 4\).
- Jibu
-
Mbadala\(4\) kwa ajili ya\(x\). Tumia mabano ili kuonyesha kuzidisha.
\[\begin{array} {ll} {} &{2x^{2} + 3x + 8} \\ {\text{Substitute }} &{2(4)^{2} + 3(4) + 8} \\ {\text{Evaluate exponents.}} &{2(16) + 3(4) + 8} \\ {\text{Multiply.}} &{32 + 12 + 8} \\{\text{Add.}} &{52} \end{array}\]
Tathmini:
\(3x^{2} - 2x + 6\)lini\(x =-3\).
- Jibu
-
\(39\)
Tathmini:
\(4x^{2} - x - 5\)lini\(x = -2\).
- Jibu
-
\(13\)
Tafsiri Maneno kwa Maneno na Integers
Kazi yetu ya awali kutafsiri Kiingereza hadi algebra pia inatumika kwa misemo ambayo ni pamoja na idadi nzuri na hasi.
Tafsiri na kurahisisha: jumla ya\(8\) na\(−12\), iliongezeka kwa\(3\).
- Jibu
-
\[\begin{array} {ll} {} &{\text{the } \textbf{sum} \text{of 8 and -12, increased by 3}} \\ {\text{Translate.}} &{[8 + (-12)] + 3} \\ {\text{Simplify. Be careful not to confuse the}} &{(-4) + 3} \\{\text{brackets with an absolute value sign.}} \\{\text{Add.}} &{-1} \end{array}\]
Tafsiri na kurahisisha: jumla ya\(9\) na\(−16\), iliongezeka kwa\(4\).
- Jibu
-
\((9 + (-16)) + 4 - 3\)
Tafsiri na kurahisisha: jumla ya\(-8\) na\(−12\), iliongezeka kwa\(7\).
- Jibu
-
\((-8 + (-12)) + 7 - 13\)
Tulipoanzisha kwanza alama za uendeshaji, tuliona kwamba maneno yanaweza kusomwa kwa njia kadhaa. Wao ni waliotajwa katika chati hapa chini.
\(a−b\) |
---|
\ (a-b\)” data-valign="top">\(a\) minus\(b\) tofauti ya\(a\) na\(b\) \(b\) kuondolewa kutoka\(a\) \(b\) chini ya\(a\) |
Kuwa makini kupata na b katika utaratibu sahihi!
Tafsiri na kisha kurahisisha
- tofauti ya\(13\) na\(−21\)
- Ondoa\(24\) kutoka\(−19\).
- Jibu
-
- \[\begin{array} {ll} {} &{\text{the } \textbf{difference } \text{of 13 and -21}} \\ {\text{Translate.}} &{13 - (-21)} \\ {\text{Simplify.}} &{34} \end{array}\]
- \[\begin{array} {ll} {} &\textbf{subtract }24 \textbf{ from }-19 \\ {\text{Translate.}} &{-19 - 24} \\ {\text{Remember, subtract b from a means }a - b} &{} \\{\text{Simplify.}} &{-43} \end{array}\]
Tafsiri na kurahisisha
- tofauti ya\(14\) na\(−23\)
- Ondoa\(21\) kutoka\(−17\).
- Jibu
-
- \(14 - (-23); 37\)
- \(-17 - 21; -38\)
Tafsiri na kurahisisha
- tofauti ya\(11\) na\(−19\)
- Ondoa\(18\) kutoka\(−11\).
- Jibu
-
- \(11 - (-19); 30\)
- \(-11 - 18; -29\)
Mara nyingine tena, kazi yetu ya awali ya kutafsiri Kiingereza hadi algebra huhamisha maneno ambayo yanajumuisha kuzidisha na kugawa integers. Kumbuka kwamba neno muhimu la kuzidisha ni “bidhaa” na kwa mgawanyiko ni “quotient.”
Tafsiri kwa kujieleza kwa algebraic na kurahisisha ikiwa inawezekana: bidhaa ya\(−2\) na\(14\).
- Jibu
-
\[\begin{array} {ll} {} &{\text{the product of }-2 \text{ and } 14} \\ {\text{Translate.}} &{(-2)(14)} \\{\text{Simplify.}} &{-28} \end{array}\]
Tafsiri kwa kujieleza kwa algebraic na kurahisisha ikiwa inawezekana: bidhaa ya\(−5\) na\(12\).
- Jibu
-
\(-5(12); -60\)
Tafsiri kwa kujieleza kwa algebraic na kurahisisha ikiwa inawezekana: bidhaa ya\(8\) na\(-13\).
- Jibu
-
\(-8(13); -104\)
Tafsiri kwa kujieleza algebraic na kurahisisha kama inawezekana: quotient ya\(−56\) na\(−7\).
- Jibu
-
\[\begin{array} {ll} {} &{\text{the quotient of }-56 \text{ and } -7} \\ {\text{Translate.}} &{-56\div(-7)} \\{\text{Simplify.}} &{8} \end{array}\]
Tafsiri kwa kujieleza algebraic na kurahisisha kama inawezekana: quotient ya\(−63\) na\(−9\).
- Jibu
-
\(-63\div (-9); 7\)
Tafsiri kwa kujieleza algebraic na kurahisisha kama inawezekana: quotient ya\(−72\) na\(−9\).
- Jibu
-
\(-72\div (-9); 8\)
Tumia Integers katika Maombi
Tutaelezea mpango wa kutatua programu. Ni vigumu kupata kitu kama hatujui nini sisi ni kuangalia kwa au nini kuiita! Kwa hiyo tunapotatua programu, sisi kwanza tunahitaji kuamua ni shida gani inatuuliza kupata. Kisha tutaandika maneno ambayo inatoa taarifa ili kuipata. Tutaweza kutafsiri maneno katika kujieleza na kisha kurahisisha kujieleza ili kupata jibu. Hatimaye, sisi muhtasari jibu katika sentensi ili kuhakikisha ni mantiki.
Jinsi ya kutumia Mkakati wa Kutatua Maombi na Integers
Joto la Urbana, Illinois asubuhi moja lilikuwa\(11\) digrii. Katikati ya mchana, joto lilikuwa limeshuka hadi\(−9\) digrii. Ilikuwa tofauti gani ya joto la asubuhi na alasiri?
- Jibu
-
Hatua ya 1. Soma tatizo. Hakikisha maneno yote na mawazo yanaeleweka. Hatua ya 2. Tambua kile tunachoulizwa kupata. tofauti ya joto la asubuhi na alasiri Hatua ya 3. Andika maneno ambayo inatoa taarifa ili kuipata. tofauti ya\(11\) na\(-9\) Hatua ya 4. Tafsiri maneno kwa kujieleza. \(11 - (-9)\) Hatua ya 5. Kurahisisha maneno. \(20\) Hatua ya 6. Andika sentensi kamili inayojibu swali. Tofauti katika joto ilikuwa digrii 20.
Joto la Anchorage, Alaska asubuhi moja lilikuwa\(15\) digrii. Katikati ya mchana joto lilikuwa limeshuka hadi\(30\) digrii chini ya sifuri. Ilikuwa tofauti gani katika joto la asubuhi na alasiri?
- Jibu
-
Tofauti katika joto ilikuwa\(45\) digrii.
Joto la Denver lilikuwa\(−6\) digrii wakati wa chakula cha mchana. By sunset joto alikuwa imeshuka kwa\(−15\) digrii. Ilikuwa tofauti gani katika joto la chakula cha mchana na jua?
- Jibu
-
Tofauti katika joto ilikuwa\(9\) digrii.
- Soma tatizo. Hakikisha maneno yote na mawazo yanaeleweka
- Tambua kile tunachoulizwa kupata.
- Andika maneno ambayo inatoa taarifa ili kuipata.
- Tafsiri maneno kwa kujieleza.
- Kurahisisha maneno.
- Jibu swali kwa sentensi kamili.
Timu ya soka ya Mustangs ilipata adhabu tatu katika robo ya tatu. Kila adhabu iliwapa hasara ya yadi kumi na tano. Idadi ya yadi imepotea nini?
- Jibu
-
Hatua ya 1. Soma tatizo. Hakikisha maneno yote na mawazo yanaeleweka. Hatua ya 2. Tambua kile tunachoulizwa kupata. idadi ya yadi waliopotea Hatua ya 3. Andika maneno ambayo inatoa taarifa ili kuipata. mara tatu adhabu ya\(15\) yadi Hatua ya 4. Tafsiri maneno kwa kujieleza. \(3(-15)\) Hatua ya 5. Kurahisisha maneno. \(-45\) Hatua ya 6. Andika sentensi kamili inayojibu swali. Timu ilipoteza\(45\) yadi.
Bears alicheza vibaya na alikuwa na adhabu saba katika mchezo. Kila adhabu ilisababisha hasara ya\(15\) yadi. Idadi ya yadi iliyopotea kutokana na adhabu ni nini?
- Jibu
-
Bears waliopotea\(105\) yadi.
Bill inatumia ATM juu ya chuo kwa sababu ni rahisi. Hata hivyo, kila wakati anatumia anashtakiwa ada ya $2. Mwezi uliopita alitumia ATM mara nane. Kiasi gani ilikuwa jumla ya ada yake kwa ajili ya kutumia ATM?
- Jibu
-
Ada ya $16 ilitolewa kutoka akaunti yake ya kuangalia.
Dhana muhimu
- Kuzidisha na Idara ya Nambari mbili zilizosainiwa
- Same Ishara-bidhaa ni chanya
- Ishara tofauti-bidhaa ni hasi
- Mkakati wa Maombi
- Tambua kile unachoulizwa kupata.
- Andika maneno ambayo inatoa taarifa ili kuipata.
- Tafsiri maneno kwa kujieleza.
- Kurahisisha maneno.
- Jibu swali kwa sentensi kamili.