Skip to main content
Global

16.7E: Mazoezi ya Sehemu ya 16.7

  • Page ID
    178922
    • Edwin “Jed” Herman & Gilbert Strang
    • OpenStax
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Katika mazoezi ya 1 - 6, bila kutumia theorem ya Stokes, kuhesabu moja kwa moja mzunguko wa\(curl \, \vecs F \cdot \vecs N\) juu ya uso uliopewa na mzunguko muhimu karibu na mipaka yake, kwa kuzingatia wote ni oriented clockwise.

    1. \(\vecs F(x,y,z) = y^2\,\mathbf{\hat i} + z^2\,\mathbf{\hat j} + x^2\,\mathbf{\hat k}\);\(S\) ni sehemu ya kwanza ya ndege\(x + y + z = 1\).

    2. \(\vecs F(x,y,z) = z\,\mathbf{\hat i} + x\,\mathbf{\hat j} + y\,\mathbf{\hat k}\);\(S\) ni hemisphere\(z = (a^2 - x^2 - y^2)^{1/2}\).

    Jibu
    \(\displaystyle \iint_S (curl \, \vecs F \cdot \vecs N) \, dS = \pi a^2\)

    3. \(\vecs F(x,y,z) = y^2\,\mathbf{\hat i} + 2x\,\mathbf{\hat j} + 5\,\mathbf{\hat k}\);\(S\) ni hemisphere\(z = (4 - x^2 - y^2)^{1/2}\).

    4. \(\vecs F(x,y,z) = z\,\mathbf{\hat i} + 2x\,\mathbf{\hat j} + 3y\,\mathbf{\hat k}\);\(S\) ni hemisphere ya juu\(z = \sqrt{9 - x^2 - y^2}\).

    Jibu
    \(\displaystyle \iint_S (curl \, \vecs F \cdot \vecs N) \, dS = 18 \pi\)

    5. \(\vecs F(x,y,z) = (x + 2z)\,\mathbf{\hat i} + (y - x)\,\mathbf{\hat j} + (z - y)\,\mathbf{\hat k}\);\(S\) ni kanda ya triangular yenye vertices\((3, 0, 0), \, (0, 3/2, 0),\) na\((0, 0, 3).\)

    6. \(\vecs F(x,y,z) = 2y\,\mathbf{\hat i} + 6z\,\mathbf{\hat j} + 3x\,\mathbf{\hat k}\);\(S\) ni sehemu ya paraboloid\(z = 4 - x^2 - y^2\) na ni juu\(xy\) -ndege.

    Jibu
    \(\displaystyle \iint_S (curl \, \vecs F \cdot \vecs N) \, dS = -8 \pi\)

    Katika mazoezi ya 7 - 9, tumia theorem ya Stokes kutathmini\(\displaystyle \iint_S (curl \, \vecs F \cdot \vecs N) \, dS\) kwa mashamba ya vector na uso.

    7. \(\vecs F(x,y,z) = xy\,\mathbf{\hat i} - z\,\mathbf{\hat j}\)na\(S\) ni uso wa mchemraba\(0 \leq x \leq 1, \, 0 \leq y \leq 1, \, 0 \leq z \leq 1\), ila kwa uso ambapo\(z = 0\) na kutumia kitengo cha nje vector kawaida.

    8. \(\vecs F(x,y,z) = xy\,\mathbf{\hat i} + x^2 \,\mathbf{\hat j} + z^2 \,\mathbf{\hat k}\); na\(C\) ni makutano ya paraboloid\(z = x^2 + y^2\) na ndege\(z = y\), na kutumia vector nje ya kawaida.

    Jibu
    \(\displaystyle \iint_S (curl \, \vecs F \cdot \vecs N) \, dS = 0\)

    9. \(\vecs F(x,y,z) = 4y\,\mathbf{\hat i} + z \,\mathbf{\hat j} + 2y \,\mathbf{\hat k}\); na\(C\) ni makutano ya nyanja\(x^2 + y^2 + z^2 = 4\) na ndege\(z = 0\), na kutumia vector nje ya kawaida.

    10. Matumizi Theorem Stokes 'kutathmini\(\displaystyle \int_C \big[2xy^2z \, dx + 2x^2yz \, dy + (x^2y^2 - 2z) \, dz\big],\) ambapo\(C\) ni Curve iliyotolewa na\(x = \cos t, \, y = \sin t, \, 0 \leq t \leq 2\pi\), traversed katika mwelekeo wa kuongeza\(t.\)

    Shamba la vector katika nafasi tatu za mwelekeo. Mishale ni kubwa zaidi ni kutoka ndege ya x, y. Mishale hupanda kutoka chini ya ndege ya x, y na kidogo juu yake. Wengine huwa na kupungua chini na kwa usawa. Curve ya mviringo inayotolewa katikati ya nafasi.

    Jibu
    \(\displaystyle \int_C \vecs F \cdot dS = 0\)

    11. [T] Use a computer algebraic system (CAS) and Stokes’ theorem to approximate line integral \(\displaystyle \int_C (y \, dx + z \, dy + x \, dz),\) where \(C\) is the intersection of plane \(x + y = 2\) and surface \(x^2 + y^2 + z^2 = 2(x + y)\), traversed counterclockwise viewed from the origin.

    12. [T] Use a CAS and Stokes’ theorem to approximate line integral \(\displaystyle \int_C (3y\, dx + 2z \, dy - 5x \, dz),\) where \(C\) is the intersection of the \(xy\)-plane and hemisphere \(z = \sqrt{1 - x^2 - y^2}\), traversed counterclockwise viewed from the top—that is, from the positive \(z\)-axis toward the \(xy\)-plane.

    Answer
    \(\displaystyle \int_C \vecs F \cdot dS = - 9.4248\)

    13. [T] Use a CAS and Stokes’ theorem to approximate line integral \(\displaystyle \int_C [(1 + y) \, z \, dx + (1 + z) x \, dy + (1 + x) y \, dz],\) where \(C\) is a triangle with vertices \((1,0,0), \, (0,1,0)\), and \((0,0,1)\) oriented counterclockwise.

    14. Use Stokes’ theorem to evaluate \(\displaystyle \iint_S curl \, \vecs F \cdot dS,\) where \(\vecs F(x,y,z) = e^{xy} cos \, z\,\mathbf{\hat i} + x^2 z\,\mathbf{\hat j} + xy\,\mathbf{\hat k}\), and \(S\) is half of sphere \(x = \sqrt{1 - y^2 - z^2}\), oriented out toward the positive \(x\)-axis.

    Answer
    \(\displaystyle \iint_S \vecs F \cdot dS = 0\)

    15. [T] Use a CAS and Stokes’ theorem to evaluate \(\displaystyle \iint_S (curl \, \vecs F \cdot \vecs N) \, dS,\) where \(\vecs F(x,y,z) = x^2 y\,\mathbf{\hat i} + xy^2 \,\mathbf{\hat j} + z^3 \,\mathbf{\hat k}\) and \(C\) is the curve of the intersection of plane \(3x + 2y + z = 6\) and cylinder \(x^2 + y^2 = 4\), oriented clockwise when viewed from above.

    16. [T] Use a CAS and Stokes’ theorem to evaluate \(\displaystyle \iint_S curl \, \vecs F \cdot dS,\) where \(\vecs F(x,y,z) = \left( \sin(y + z) - yx^2 - \dfrac{y^3}{3}\right)\,\mathbf{\hat i} + x \, \cos (y + z) \,\mathbf{\hat j} + \cos (2y) \,\mathbf{\hat k}\) and \(S\) consists of the top and the four sides but not the bottom of the cube with vertices \((\pm 1, \, \pm1, \, \pm1)\), oriented outward.

    Answer
    \(\displaystyle \iint_S curl \, \vecs F \cdot dS = 2.6667\)

    17. [T] Use a CAS and Stokes’ theorem to evaluate \(\displaystyle \iint_S curl \, \vecs F \cdot dS,\) where \(\vecs F(x,y,z) = z^2\,\mathbf{\hat i} + 3xy\,\mathbf{\hat j} + x^3y^3\,\mathbf{\hat k}\) and \(S\) is the top part of \(z = 5 - x^2 - y^2\) above plane \(z = 1\) and \(S\) is oriented upward.

    18. Use Stokes’ theorem to evaluate \(\displaystyle \iint_S (curl \, \vecs F \cdot \vecs N) dS,\) where \(\vecs F(x,y,z) = z^2\,\mathbf{\hat i} + y^2\,\mathbf{\hat j} + x\,\mathbf{\hat k}\) and \(S\) is a triangle with vertices \((1, 0, 0), \, (0, 1, 0)\) and \((0, 0, 1)\) with counterclockwise orientation.

    Answer
    \(\displaystyle \iint_S (curl \, \vecs F \cdot \vecs N)dS = -\dfrac{1}{6}\)

    19. Use Stokes’ theorem to evaluate line integral \(\displaystyle \int_C (z \, dx + x \, dy + y \, dz),\) where \(C\) is a triangle with vertices \((3, 0, 0), \, (0, 0, 2),\) and \((0, 6, 0)\) traversed in the given order.

    20. Use Stokes’ theorem to evaluate \(\displaystyle \int_C \left(\dfrac{1}{2} y^2 \, dx + z \, dy + x \, dz \right),\) where \(C\) is the curve of intersection of plane \(x + z = 1\) and ellipsoid \(x^2 + 2y^2 + z^2 = 1\), oriented clockwise from the origin.

    A diagram of an intersecting plane and ellipsoid in three dimensional space. There is an orange curve drawn to show the intersection.

    Jibu
    \(\displaystyle \int_C \left(\dfrac{1}{2} y^2 \, dx + z \, dy + x \, dz \right) = - \dfrac{\pi}{4}\)

    21. Matumizi Stokes 'theorem kutathmini\(\displaystyle \iint_S (curl \, \vecs F \cdot \vecs N) dS,\) wapi\(\vecs F(x,y,z) = x\,\mathbf{\hat i} + y^2\,\mathbf{\hat j} + ze^{xy}\,\mathbf{\hat k}\) na\(S\) ni sehemu ya uso\(z = 1 - x^2 - 2y^2\) na\(z \geq 0\), oriented kinyume chake.

    22. Matumizi Stokes 'theorem kwa ajili ya uwanja vector\(\vecs F(x,y,z) = z\,\mathbf{\hat i} + 3x\,\mathbf{\hat j} + 2z\,\mathbf{\hat k}\) ambapo\(S\) ni uso\(z = 1 - x^2 - 2y^2, \, z \geq 0\),\(C\) ni mduara wa mipaka\(x^2 + y^2 = 1\), na\(S\) ni oriented katika chanya\(z\) -mwelekeo.

    Jibu
    \(\displaystyle \iint_S (curl \, \vecs F \cdot \vecs N)dS = -3\pi\)

    23. Matumizi Stokes 'theorem kwa ajili ya uwanja vector\(\vecs F(x,y,z) = - \dfrac{3}{2} y^2\,\mathbf{\hat i} - 2 xy\,\mathbf{\hat j} + yz\,\mathbf{\hat k}\), ambapo\(S\) ni kwamba sehemu ya uso wa ndege\(x + y + z = 1\) zilizomo ndani ya pembetatu\(C\)\((1, 0, 0), \, (0, 1, 0),\) na\((0, 0, 1),\) vipeo na kupita kinyume chake kama kutazamwa kutoka juu.

    24. Njia fulani iliyofungwa\(C\) katika ndege\(2x + 2y + z = 1\) inajulikana kwa mradi kwenye mduara wa kitengo\(x^2 + y^2 = 1\) katika\(xy\) -ndege. Hebu\(C\) kuwa mara kwa mara na basi\(\vecs R(x,y,z) = x\,\mathbf{\hat i} + y\,\mathbf{\hat j} + z\,\mathbf{\hat k}\). Tumia theorem Stokes 'kutathmini\(\displaystyle \int_C(c \,\mathbf{\hat k} \times \vecs R) \cdot dS.\)

    Jibu
    \(\displaystyle \int_C (c \,\mathbf{\hat k} \times \vecs R) \cdot dS = 2\pi c\)

    25. Matumizi Stokes 'theorem na basi\(C\) kuwa mipaka ya uso\(z = x^2 + y^2\) na\(0 \leq x \leq 2\) na\(0 \leq y \leq 1\) oriented na zaidi inakabiliwa kawaida. Eleza\(\vecs F(x,y,z) = \big(\sin (x^3) + xz\big) \,\mathbf{\hat i} + (x - yz)\,\mathbf{\hat j} + \cos (z^4) \,\mathbf{\hat k}\) na tathmini\(\int_C \vecs F \cdot dS\).

    26. Hebu\(S\) kuwa hemisphere\(x^2 + y^2 + z^2 = 4\) na\(z \geq 0\), oriented juu. Hebu\(\vecs F(x,y,z) = x^2 e^{yz}\,\mathbf{\hat i} + y^2 e^{xz} \,\mathbf{\hat j} + z^2 e^{xy}\,\mathbf{\hat k}\) kuwa uwanja wa vector. Tumia theorem Stokes 'kutathmini\(\displaystyle \iint_S curl \, \vecs F \cdot dS.\)

    Jibu
    \(\displaystyle \iint_S curl \, \vecs F \cdot dS = 0\)

    27. Hebu\(\vecs F(x,y,z) = xy\,\mathbf{\hat i} + (e^{z^2} + y)\,\mathbf{\hat j} + (x + y)\,\mathbf{\hat k}\) na hebu\(S\) kuwa grafu ya kazi\(y = \dfrac{x^2}{9} + \dfrac{z^2}{9} - 1\) na\(z \leq 0\) oriented ili vector kawaida\(S\) ina chanya y sehemu. Matumizi Theorem Stokes 'kukokotoa muhimu\(\displaystyle \iint_S curl \, \vecs F \cdot dS.\)

    28. Tumia theorem ya Stokes kutathmini\(\displaystyle \oint \vecs F \cdot dS,\) wapi\(\vecs F(x,y,z) = y\,\mathbf{\hat i} + z\,\mathbf{\hat j} + x\,\mathbf{\hat k}\) na\(C\) ni pembetatu yenye vipeo\((0, 0, 0), \, (2, 0, 0)\) na\(0,-2,2)\) inaelekezwa kinyume chake wakati unapotazamwa kutoka hapo juu.

    Jibu
    \(\displaystyle \oint \vecs F \cdot dS = -4\)

    29. Matumizi ya uso muhimu katika Theorem Stokes 'kwa mahesabu ya mzunguko wa shamba\(\vecs F,\)\(\vecs F(x,y,z) = x^2y^3 \,\mathbf{\hat i} + \,\mathbf{\hat j} + z\,\mathbf{\hat k}\) kote\(C,\) ambayo ni makutano ya silinda\(x^2 + y^2 = 4\) na ulimwengu\(x^2 + y^2 + z^2 = 16, \, z \geq 0\), oriented kinyume chake wakati kutazamwa kutoka juu.

    Mchoro katika vipimo vitatu vya shamba la vector na makutano ya sylinder na hemisphere. Mishale ni ya usawa na ina vipengele hasi x kwa vipengele hasi y na kuwa na vipengele chanya x kwa vipengele chanya y. Curve ya makutano kati ya hemphere na silinda hutolewa kwa bluu.

    30. Tumia theorem ya Stokes 'kukokotoa\(\displaystyle \iint_S curl \, \vecs F \cdot dS.\) where \(\vecs F(x,y,z) = \,\mathbf{\hat i} + xy^2\,\mathbf{\hat j} + xy^2 \,\mathbf{\hat k}\) and \(S\) is a part of plane \(y + z = 2\) inside cylinder \(x^2 + y^2 = 1\) and oriented counterclockwise.

    A diagram of a vector field in three dimensional space showing the intersection of a plane and a cylinder. The curve where the plane and cylinder intersect is drawn in blue.

    Jibu
    \(\displaystyle \iint_S curl \, \vecs F \cdot dS = 0\)

    31. Tumia theorem ya Stokes kutathmini\(\displaystyle \iint_S curl \, \vecs F \cdot dS,\) wapi\(\vecs F(x,y,z) = -y^2 \,\mathbf{\hat i} + x\,\mathbf{\hat j} + z^2\,\mathbf{\hat k}\) na\(S\) ni sehemu ya ndege\(x + y + z = 1\) katika octant chanya na oriented kinyume chake\(x \geq 0, \, y \geq 0, \, z \geq 0\).

    32. Hebu\(\vecs F(x,y,z) = xy\,\mathbf{\hat i} + 2z\,\mathbf{\hat j} - 2y\,\mathbf{\hat k}\) na\(C\) uwe na makutano ya ndege\(x + z = 5\) na silinda\(x^2 + y^2 = 9\), ambayo inaelekezwa kinyume chake wakati inatazamwa kutoka juu. Compute line muhimu ya\(\vecs F\) juu ya\(C\) kutumia Theorem Stokes '.

    Jibu
    \(\displaystyle \iint_S curl \, \vecs F \cdot dS = -36 \pi\)

    33. [T] Matumizi CAS na basi\(\vecs F(x,y,z) = xy^2\,\mathbf{\hat i} + (yz - x)\,\mathbf{\hat j} + e^{yxz}\,\mathbf{\hat k}\). Matumizi Stokes 'theorem kukokotoa uso muhimu ya curl\(\vecs F\) juu ya uso\(S\) na mwelekeo ndani yenye mchemraba\([0,1] \times [0,1] \times [0,1]\) na upande wa kulia kukosa.

    34. Hebu\(S\) kuwa ellipsoid\(\dfrac{x^2}{4} + \dfrac{y^2}{9} + z^2 = 1\) oriented kinyume na basi\(\vecs F\) kuwa uwanja vector na kazi sehemu ambayo kuendelea sehemu derivatives.

    Jibu
    \(\displaystyle \iint_S curl \, \vecs F \cdot \vecs N = 0\)

    35. Hebu\(S\) kuwa sehemu ya paraboloid\(z = 9 - x^2 - y^2\) na\(z \geq 0\). Thibitisha Theorem Stokes 'kwa uwanja vector\(\vecs F(x,y,z) = 3z\,\mathbf{\hat i} + 4x\,\mathbf{\hat j} + 2y\,\mathbf{\hat k}\).

    36. [T] Matumizi CAS na Stokes 'theorem kutathmini\(\displaystyle \oint \vecs F \cdot dS,\) kama\(\vecs F(x,y,z) = (3z - \sin x) \,\mathbf{\hat i} + (x^2 + e^y) \,\mathbf{\hat j} + (y^3 - \cos z) \,\mathbf{\hat k}\), ambapo\(C\) ni Curve iliyotolewa na\(x = \cos t, \, y = \sin t, \, z = 1; \, 0 \leq t \leq 2\pi\).

    Jibu
    \(\displaystyle \oint_C \vecs F \cdot d\vecs{r} = 0\)

    37. [T] Matumizi CAS na Stokes 'theorem kutathmini\(\vecs F(x,y,z) = 2y\,\mathbf{\hat i} + e^z\,\mathbf{\hat j} - \arctan x \,\mathbf{\hat k}\) na\(S\) kama sehemu ya paraboloid\(z = 4 - x^2 - y^2\) kukatwa na\(xy\) -ndege oriented kinyume.

    38. [T] Matumizi CAS kutathmini\(\displaystyle \iint_S curl (F) \cdot dS,\) wapi\(\vecs F(x,y,z) = 2z\,\mathbf{\hat i} + 3x\,\mathbf{\hat j} + 5y\,\mathbf{\hat k}\) na\(S\) ni uso parametrically na\(\vecs r(r,\theta) = r \, \cos \theta \,\mathbf{\hat i} + r \, \sin \theta \,\mathbf{\hat j} + (4 - r^2) \,\mathbf{\hat k} \, (0 \leq \theta \leq 2\pi, \, 0 \leq r \leq 3)\).

    Jibu
    \(\displaystyle \iint_S curl (F) \cdot dS = 84.8230\)

    39. Hebu\(S\) kuwa paraboloid\(z = a (1 - x^2 - y^2)\)\(z \geq 0\), kwa,\(a > 0\) wapi idadi halisi. Hebu\(\vecs F(x,y,z) = \langle x - y, \, y + z, \, z - x \rangle\). Kwa thamani gani (s) ya\(a\) (kama ipo)\(\displaystyle \iint_S (\vecs \nabla \times \vecs F) \cdot \vecs n \, dS\) ina thamani yake ya juu?

    Kwa mazoezi ya maombi 40 - 41, lengo ni kutathmini\(\displaystyle A = \iint_S (\vecs \nabla \times \vecs F) \cdot \vecs n \, dS,\) wapi\(\vecs F = \langle xz, \, -xz, \, xy \rangle\) na\(S\) nusu ya juu ya ellipsoid\(x^2 + y^2 + 8z^2 = 1\), wapi\(z \geq 0\).

    40. Kutathmini muhimu uso juu ya uso rahisi zaidi kupata thamani ya\(A.\)

    Jibu
    \(\displaystyle A = \iint_S (\vecs \nabla \times \vecs F) \cdot \vecs n \, dS = 0\)

    41. Tathmini kwa\(A\) kutumia mstari muhimu.

    42. Kuchukua paraboloid\(z = x^2 + y^2\)\(0 \leq z \leq 4\), kwa, na kipande kwa ndege\(y = 0\). Hebu\(S\) iwe uso unaoendelea\(y \geq 0\), ikiwa ni pamoja na uso wa mipango katika\(xz\) -ndege. Hebu\(C\) kuwa sehemu ya semicircle na mstari ambayo imefungwa cap\(S\) ya ndege\(z = 4\) na mwelekeo kinyume chake. Hebu\(\vecs F = \langle 2z + y, \, 2x + z, \, 2y + x \rangle\). Tathmini\(\displaystyle \iint_S (\vecs \nabla \times \vecs F) \cdot \vecs n \, dS.\)

    Mchoro wa uwanja wa vector katika nafasi tatu dimensional ambapo paraboloid na kipeo katika asili, ndege katika y=0, na ndege katika z=4 intersect. Uso uliobaki ni nusu ya paraboloidi chini ya z=4 na juu ya y=0.

    Jibu

    Template:ContribOpenStaxCalc