Skip to main content
Global

8.3E:练习

  • Page ID
    203973
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    练习成就完美

    练习 SET A:使用乘积属性简化激进表达式

    在以下练习中,使用产品属性来简化激进表达式。

    1. \(\sqrt{27}\)
    2. \(\sqrt{80}\)
    3. \(\sqrt{125}\)
    4. \(\sqrt{96}\)
    5. \(\sqrt{147}\)
    6. \(\sqrt{450}\)
    7. \(\sqrt{800}\)
    8. \(\sqrt{675}\)
      1. \(\sqrt[4]{32}\)
      2. \(\sqrt[5]{64}\)
      1. \(\sqrt[3]{625}\)
      2. \(\sqrt[6]{128}\)
      1. \(\sqrt[5]{64}\)
      2. \(\sqrt[3]{256}\)
      1. \(\sqrt[4]{3125}\)
      2. \(\sqrt[3]{81}\)
    回答

    1。 \(3\sqrt{3}\)

    3。 \(5\sqrt{5}\)

    5。 \(7\sqrt{3}\)

    7。 \(20\sqrt{2}\)

    9。

    1. \(2 \sqrt[4]{2}\)
    2. \(2 \sqrt[5]{2}\)

    11。

    1. \(2 \sqrt[5]{2}\)
    2. \(4 \sqrt[3]{4}\)
    练习 SET B:使用乘积属性简化激进表达式

    在以下练习中,根据需要简化绝对值符号的使用。

      1. \(\sqrt{y^{11}}\)
      2. \(\sqrt[3]{r^{5}}\)
      3. \(\sqrt[4]{s^{10}}\)
      1. \(\sqrt{m^{13}}\)
      2. \(\sqrt[5]{u^{7}}\)
      3. \(\sqrt[6]{v^{11}}\)
      1. \(\sqrt{n^{21}}\)
      2. \(\sqrt[3]{q^{8}}\)
      3. \(\sqrt[8]{n^{10}}\)
      1. \(\sqrt{r^{25}}\)
      2. \(\sqrt[5]{p^{8}}\)
      3. \(\sqrt[4]{m^{5}}\)
      1. \(\sqrt{125 r^{13}}\)
      2. \(\sqrt[3]{108 x^{5}}\)
      3. \(\sqrt[4]{48 y^{6}}\)
      1. \(\sqrt{80 s^{15}}\)
      2. \(\sqrt[5]{96 a^{7}}\)
      3. \(\sqrt[6]{128 b^{7}}\)
      1. \(\sqrt{242 m^{23}}\)
      2. \(\sqrt[4]{405 m 10}\)
      3. \(\sqrt[5]{160 n^{8}}\)
      1. \(\sqrt{175 n^{13}}\)
      2. \(\sqrt[5]{512 p^{5}}\)
      3. \(\sqrt[4]{324 q^{7}}\)
      1. \(\sqrt{147 m^{7} n^{11}}\)
      2. \(\sqrt[3]{48 x^{6} y^{7}}\)
      3. \(\sqrt[4]{32 x^{5} y^{4}}\)
      1. \(\sqrt{96 r^{3} s^{3}}\)
      2. \(\sqrt[3]{80 x^{7} y^{6}}\)
      3. \(\sqrt[4]{80 x^{8} y^{9}}\)
      1. \(\sqrt{192 q^{3} r^{7}}\)
      2. \(\sqrt[3]{54 m^{9} n^{10}}\)
      3. \(\sqrt[4]{81 a^{9} b^{8}}\)
      1. \(\sqrt{150 m^{9} n^{3}}\)
      2. \(\sqrt[3]{81 p^{7} q^{8}}\)
      3. \(\sqrt[4]{162 c^{11} d^{12}}\)
      1. \(\sqrt[3]{-864}\)
      2. \(\sqrt[4]{-256}\)
      1. \(\sqrt[5]{-486}\)
      2. \(\sqrt[6]{-64}\)
      1. \(\sqrt[5]{-32}\)
      2. \(\sqrt[8]{-1}\)
      1. \(\sqrt[3]{-8}\)
      2. \(\sqrt[4]{-16}\)
      1. \(5+\sqrt{12}\)
      2. \(\dfrac{10-\sqrt{24}}{2}\)
      1. \(8+\sqrt{96}\)
      2. \(\dfrac{8-\sqrt{80}}{4}\)
      1. \(1+\sqrt{45}\)
      2. \(\dfrac{3+\sqrt{90}}{3}\)
      1. \(3+\sqrt{125}\)
      2. \(\dfrac{15+\sqrt{75}}{5}\)
    回答

    1。

    1. \(\left|y^{5}\right| \sqrt{y}\)
    2. \(r \sqrt[3]{r^{2}}\)
    3. \(s^{2} \sqrt[4]{s^{2}}\)

    3。

    1. \(n^{10} \sqrt{n}\)
    2. \(q^{2} \sqrt[3]{q^{2}}\)
    3. \(|n| \sqrt[8]{n^{2}}\)

    5。

    1. \(5 r^{6} \sqrt{5 r}\)
    2. \(3 x \sqrt[3]{4 x^{2}}\)
    3. \(2|y| \sqrt[4]{3 y^{2}}\)

    7。

    1. \(11\left|m^{11}\right| \sqrt{2 m}\)
    2. \(3 m^{2} \sqrt[4]{5 m^{2}}\)
    3. \(2 n \sqrt[5]{5 n^{3}}\)

    9。

    1. \(7\left|m^{3} n^{5}\right| \sqrt{3 m n}\)
    2. \(2 x^{2} y^{2} \sqrt[3]{6 y}\)
    3. \(2|x y| \sqrt[4]{2 x}\)

    11。

    1. \(8\left|q r^{3}\right| \sqrt{3 q r}\)
    2. \(3 m^{3} n^{3} \sqrt[3]{2 n}\)
    3. \(3 a^{2} b^{2} \sqrt[4]{a}\)

    13。

    1. \(-6 \sqrt[3]{4}\)
    2. 不是真的

    15。

    1. \(-2\)
    2. 不是真的

    17。

    1. \(5+2 \sqrt{3}\)
    2. \(5-\sqrt{6}\)

    19。

    1. \(1+3 \sqrt{5}\)
    2. \(1+\sqrt{10}\)
    练习集 C:使用商属性简化激进表达式

    在以下练习中,使用 Quotient 属性来简化平方根。

      1. \(\sqrt{\dfrac{45}{80}}\)
      2. \(\sqrt[3]{\dfrac{8}{27}}\)
      3. \(\sqrt[4]{\dfrac{1}{81}}\)
      1. \(\sqrt{\dfrac{72}{98}}\)
      2. \(\sqrt[3]{\dfrac{24}{81}}\)
      3. \(\sqrt[4]{\dfrac{6}{96}}\)
      1. \(\sqrt{\dfrac{100}{36}}\)
      2. \(\sqrt[3]{\dfrac{81}{375}}\)
      3. \(\sqrt[4]{\dfrac{1}{256}}\)
      1. \(\sqrt{\dfrac{121}{16}}\)
      2. \(\sqrt[3]{\dfrac{16}{250}}\)
      3. \(\sqrt[4]{\dfrac{32}{162}}\)
      1. \(\sqrt{\dfrac{x^{10}}{x^{6}}}\)
      2. \(\sqrt[3]{\dfrac{p^{11}}{p^{2}}}\)
      3. \(\sqrt[4]{\dfrac{q^{17}}{q^{13}}}\)
      1. \(\sqrt{\dfrac{p^{20}}{p^{10}}}\)
      2. \(\sqrt[5]{\dfrac{d^{12}}{d^{7}}}\)
      3. \(\sqrt[8]{\dfrac{m^{12}}{m^{4}}}\)
      1. \(\sqrt{\dfrac{y^{4}}{y^{8}}}\)
      2. \(\sqrt[5]{\dfrac{u^{21}}{u^{11}}}\)
      3. \(\sqrt[6]{\dfrac{v^{30}}{v^{12}}}\)
      1. \(\sqrt{\dfrac{q^{8}}{q^{14}}}\)
      2. \(\sqrt[3]{\dfrac{r^{14}}{r^{5}}}\)
      3. \(\sqrt[4]{\dfrac{c^{21}}{c^{9}}}\)
    1. \(\sqrt{\dfrac{96 x^{7}}{121}}\)
    2. \(\sqrt{\dfrac{108 y^{4}}{49}}\)
    3. \(\sqrt{\dfrac{300 m^{5}}{64}}\)
    4. \(\sqrt{\dfrac{125 n^{7}}{169}}\)
    5. \(\sqrt{\dfrac{98 r^{5}}{100}}\)
    6. \(\sqrt{\dfrac{180 s^{10}}{144}}\)
    7. \(\sqrt{\dfrac{28 q^{6}}{225}}\)
    8. \(\sqrt{\dfrac{150 r^{3}}{256}}\)
      1. \(\sqrt{\dfrac{75 r^{9}}{s^{8}}}\)
      2. \(\sqrt[3]{\dfrac{54 a^{8}}{b^{3}}}\)
      3. \(\sqrt[4]{\dfrac{64 c^{5}}{d^{4}}}\)
      1. \(\sqrt{\dfrac{72 x^{5}}{y^{6}}}\)
      2. \(\sqrt[5]{\dfrac{96 r^{11}}{s^{5}}}\)
      3. \(\sqrt[6]{\dfrac{128 u^{7}}{v^{12}}}\)
      1. \(\sqrt{\dfrac{28 p^{7}}{q^{2}}}\)
      2. \(\sqrt[3]{\dfrac{81 s^{8}}{t^{3}}}\)
      3. \(\sqrt[4]{\dfrac{64 p^{15}}{q^{12}}}\)
      1. \(\sqrt{\dfrac{45 r^{3}}{s^{10}}}\)
      2. \(\sqrt[3]{\dfrac{625 u^{10}}{v^{3}}}\)
      3. \(\sqrt[4]{\dfrac{729 c^{21}}{d^{8}}}\)
      1. \(\sqrt{\dfrac{32 x^{5} y^{3}}{18 x^{3} y}}\)
      2. \(\sqrt[3]{\dfrac{5 x^{6} y^{9}}{40 x^{5} y^{3}}}\)
      3. \(\sqrt[4]{\dfrac{5 a^{8} b^{6}}{80 a^{3} b^{2}}}\)
      1. \(\sqrt{\dfrac{75 r^{6} s^{8}}{48 r s^{4}}}\)
      2. \(\sqrt[3]{\dfrac{24 x^{8} y^{4}}{81 x^{2} y}}\)
      3. \(\sqrt[4]{\dfrac{32 m^{9} n^{2}}{162 m n^{2}}}\)
      1. \(\sqrt{\dfrac{27 p^{2} q}{108 p^{4} q^{3}}}\)
      2. \(\sqrt[3]{\dfrac{16 c^{5} d^{7}}{250 c^{2} d^{2}}}\)
      3. \(\sqrt[6]{\dfrac{2 m^{9} n^{7}}{128 m^{3} n}}\)
      1. \(\sqrt{\dfrac{50 r^{5} s^{2}}{128 r^{2} s^{6}}}\)
      2. \(\sqrt[3]{\dfrac{24 m^{9} n^{7}}{375 m^{4} n}}\)
      3. \(\sqrt[4]{\dfrac{81 m^{2} n^{8}}{256 m^{1} n^{2}}}\)
      1. \(\dfrac{\sqrt{45 p^{9}}}{\sqrt{5 q^{2}}}\)
      2. \(\dfrac{\sqrt[4]{64}}{\sqrt[4]{2}}\)
      3. \(\dfrac{\sqrt[5]{128 x^{8}}}{\sqrt[5]{2 x^{2}}}\)
      1. \(\dfrac{\sqrt{80 q^{5}}}{\sqrt{5 q}}\)
      2. \(\dfrac{\sqrt[3]{-625}}{\sqrt[3]{5}}\)
      3. \(\dfrac{\sqrt[4]{80 m^{7}}}{\sqrt[4]{5 m}}\)
      1. \(\dfrac{\sqrt{50 m^{7}}}{\sqrt{2 m}}\)
      2. \(\sqrt[3]{\dfrac{1250}{2}}\)
      3. \(\sqrt[4]{\dfrac{486 y^{9}}{2 y^{3}}}\)
      1. \(\dfrac{\sqrt{72 n^{11}}}{\sqrt{2 n}}\)
      2. \(\sqrt[3]{\dfrac{162}{6}}\)
      3. \(\sqrt[4]{\dfrac{160 r^{10}}{5 r^{3}}}\)
    回答

    1。

    1. \(\dfrac{3}{4}\)
    2. \(\dfrac{2}{3}\)
    3. \(\dfrac{1}{3}\)

    3。

    1. \(\dfrac{5}{3}\)
    2. \(\dfrac{3}{5}\)
    3. \(\dfrac{1}{4}\)

    5。

    1. \(x^{2}\)
    2. \(p^{3}\)
    3. \(|q|\)

    7。

    1. \(\dfrac{1}{y^{2}}\)
    2. \(u^{2}\)
    3. \(|v^{3}|\)

    9。 \(\dfrac{4\left|x^{3}\right| \sqrt{6 x}}{11}\)

    11。 \(\dfrac{10 m^{2} \sqrt{3 m}}{8}\)

    13。 \(\dfrac{7 r^{2} \sqrt{2 r}}{10}\)

    15。 \(\dfrac{2\left|q^{3}\right| \sqrt{7}}{15}\)

    17。

    1. \(\dfrac{5 r^{4} \sqrt{3 r}}{s^{4}}\)
    2. \(\dfrac{3 a^{2} \sqrt[3]{2 a^{2}}}{|b|}\)
    3. \(\dfrac{2|c| \sqrt[4]{4 c}}{|d|}\)

    19。

    1. \(\dfrac{2\left|p^{3}\right| \sqrt{7 p}}{|q|}\)
    2. \(\dfrac{3 s^{2} \sqrt[3]{3 s^{2}}}{t}\)
    3. \(\dfrac{2\left|p^{3}\right| \sqrt[4]{4 p^{3}}}{\left|q^{3}\right|}\)

    21。

    1. \(\dfrac{4|x y|}{3}\)
    2. \(\dfrac{y^{2} \sqrt[3]{x}}{2}\)
    3. \(\dfrac{|a b| \sqrt[4]{a}}{4}\)

    23。

    1. \(\dfrac{1}{2|p q|}\)
    2. \(\dfrac{2 c d \sqrt[5]{2 d^{2}}}{5}\)
    3. \(\dfrac{|m n| \sqrt[6]{2}}{2}\)

    25。

    1. \(\dfrac{3 p^{4} \sqrt{p}}{|q|}\)
    2. \(2 \sqrt[4]{2}\)
    3. \(2 x \sqrt[5]{2 x}\)

    27。

    1. \(5\left|m^{3}\right|\)
    2. \(5 \sqrt[3]{5}\)
    3. \(3|y| \sqrt[4]{3 y^{2}}\)
    练习套装 D:写作练习
    1. 解释原因\(\sqrt{x^{4}}=x^{2}\)。 然后解释原因\(\sqrt{x^{16}}=x^{8}\)
    2. 解释\(7+\sqrt{9}\)为什么不等于\(\sqrt{7+9}\)
    3. 解释一下你是怎么知道的\(\sqrt[5]{x^{10}}=x^{2}\)
    4. 解释为什么\(\sqrt[4]{-64}\)不是实数而是\(\sqrt[3]{-64}\)实数。
    回答

    1。 答案可能有所不同

    3。 答案可能有所不同

    自检

    a. 完成练习后,使用此清单评估您对本节目标的掌握程度。

    此表有 3 行和 4 列。 第一行是标题行,它标记了每列。 第一列标题是 “我可以”,第二个是 “自信”,第三栏是 “有帮助”,第四列是 “不,我不明白”。™ 第一列下方是 “使用产品属性来简化激进表达式” 和 “使用商数属性来简化激进表达式” 这两个短语。 其他栏留空,以便学员可以指明他们对每个主题的掌握程度。
    图 8.2.1

    b. 看完这份清单后,你会怎么做才能对所有目标充满信心?