Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 
Global

4.6: מצא את משוואת הקו

מטרות למידה

בסוף פרק זה, תוכל:

  • מצא משוואה של הקו בהינתן השיפוע והיירוט y
  • מצא משוואה של הקו בהינתן המדרון ונקודה
  • מצא משוואה של הקו בהינתן שתי נקודות
  • מצא משוואה של קו מקביל לקו נתון
  • מצא משוואה של קו בניצב לקו נתון
הערה

לפני שתתחיל, קח את חידון המוכנות הזה.

  1. לפתור:23=x5.
    אם פספסת בעיה זו, עיין בתרגיל 2.2.4.
  2. פשט:25(x15).
    אם פספסת בעיה זו, עיין בתרגיל 1.10.34.

איך קמעונאים מקוונים יודעים ש'אולי גם תאהב' פריט מסוים המבוסס על משהו שהזמנת זה עתה? כיצד יכולים כלכלנים לדעת כיצד עליית שכר המינימום תשפיע על שיעור האבטלה? כיצד חוקרים רפואיים יוצרים תרופות למיקוד תאים סרטניים? כיצד יכולים מהנדסי תנועה לחזות את ההשפעה על זמן הנסיעה שלך לעלייה או ירידה במחירי הדלק? זה הכל מתמטיקה.

אתה נמצא בנקודה מרגשת במסע המתמטי שלך מכיוון שלמתמטיקה שאתה לומד יש יישומים מעניינים בעולם האמיתי.

מדעי הפיזיקה, מדעי החברה ועולם העסקים מלאים במצבים שניתן לדגמן באמצעות משוואות לינאריות המתייחסות לשני משתנים. הנתונים נאספים ומוצגים בתרשים. אם נראה שנקודות הנתונים יוצרות קו ישר, ניתן להשתמש במשוואה של קו זה כדי לחזות את הערך של משתנה אחד על סמך הערך של המשתנה השני.

כדי ליצור מודל מתמטי של קשר לינארי בין שני משתנים, עלינו להיות מסוגלים למצוא את משוואת הקו. בחלק זה נבחן מספר דרכים לכתוב את המשוואה של שורה. השיטה הספציפית בה אנו משתמשים תיקבע על פי המידע שניתן לנו.

מצא משוואה של הקו בהתחשב בשיפוע ו- y -יירוט

אנו יכולים לקבוע בקלות את השיפוע והיירוט של קו אם המשוואה נכתבה בצורת שיפוע - יירוט, y = mx+b כעת, נעשה את ההיפוך - נתחיל בשיפוע ו- y -יירוט ונשתמש בהם כדי למצוא את משוואת הקו.

תרגיל 4.6.1

מצא משוואה של קו עם שיפוע −7 ו- y -יירוט (0, −1).

תשובה

מכיוון שאנו מקבלים את השיפוע ו- y -יירוט של הקו, אנו יכולים להחליף את הערכים הדרושים לצורת השיפוע — יירוט, y = mx+b.

תן שם למדרון. .
תן שם ליירוט y. .
החלף את הערכים ל- y = mx+b. .
  .
  .
תרגיל 4.6.2

מצא משוואה של קו עם שיפוע 25 ו- y -יירוט (0,4).

תשובה

y=25x+4

תרגיל 4.6.3

מצא משוואה של קו עם שיפוע -1 ו- y -יירוט (0, -3).

תשובה

y=x3

לפעמים, השיפוע והיירוט צריכים להיקבע מהגרף.

תרגיל 4.6.4

מצא את המשוואה של הקו המוצג.

הגרף מציג את מישור הקואורדינטות x y. צירי ה- x וה- y עוברים כל אחד מ- 7 ל- 7 שלילי. קו מיירט את ציר ה- y ב- (0, שלילי 4), עובר דרך הנקודה המתוכננת (3, שלילי 2) ומיירט את ציר ה- x ב (4, 0).

תשובה

עלינו למצוא את השיפוע ואת יירוט ה- y של הקו מהגרף כדי שנוכל להחליף את הערכים הדרושים לצורת השיפוע — יירוט, y=mx+by=mx+b.

כדי למצוא את המדרון, אנו בוחרים שתי נקודות בגרף.

יירוט y הוא (0, -4) והגרף עובר דרכו (3, -2).

מצא את המדרון על ידי ספירת העלייה והריצה. .
  .
מצא את יירוט y. .
החלף את הערכים ל- y = mx+b. .
  .
תרגיל 4.6.5

מצא את משוואת הקו המוצג בתרשים.

הגרף מציג את מישור הקואורדינטות x y. צירי ה- x וה- y עוברים כל אחד מ- 7 ל- 7 שלילי. קו מיירט את ציר ה- x ב (שלילי 2, 0), מיירט את ציר ה- y ב- (0, 1) ועובר דרך הנקודה המתוכננת (5, 4).

תשובה

y=35x+1

תרגיל 4.6.6

מצא את משוואת הקו המוצג בתרשים.

הגרף מציג את מישור הקואורדינטות x y. צירי ה- x וה- y עוברים כל אחד מ- 7 ל- 7 שלילי. קו מיירט את ציר ה- y ב- (0, שלילי 5), עובר דרך הנקודה המתוכננת (3, שלילי 1) ומיירט את ציר ה- x ב (15 רבעים, 0).

תשובה

y=43x5

מצא משוואה של הקו בהינתן המדרון ונקודה

מציאת משוואה של קו באמצעות צורת השיפוע -יירוט של המשוואה עובדת היטב כאשר מקבלים את השיפוע ו- y -יירוט או כשאתה קורא אותם מגרף. אבל מה קורה כשיש לך נקודה נוספת במקום יירוט y?

אנו הולכים להשתמש בנוסחת השיפוע כדי להפיק צורה אחרת של משוואה של הקו. נניח שיש לנו קו שיש לו שיפוע מ"מ ומכיל נקודה ספציפית כלשהי (x1,y1) ונקודה אחרת, שפשוט נקרא לה (x, y). אנו יכולים לכתוב את שיפוע השורה הזו ואז לשנות אותה לצורה אחרת.

m=yy1xx1Multiply both sides of the equation by xx1.m(xx1)=(yy1xx1)(xx1)Simplify.m(xx1)=yy1Rewrite the equation with the y terms on the left.yy1=m(xx1)

תבנית זו נקראת צורת נקודה-שיפוע של משוואת קו.

נקודה — צורת שיפוע של משוואת קו

צורת הנקודה-שיפוע של משוואה של קו עם שיפוע מ"מ ומכילה את הנקודה היא (x1,y1)

אין טקסט חלופי

אנו יכולים להשתמש בצורת נקודה-שיפוע של משוואה כדי למצוא משוואה של קו כאשר נותנים לנו את השיפוע ונקודה אחת. לאחר מכן נכתוב מחדש את המשוואה בצורת שיפוע — יירוט. רוב היישומים של משוואות לינאריות משתמשים בצורת השיפוע -יירוט.

תרגיל 4.6.7: Find an Equation of a Line Given the Slope and a Point

מצא משוואה של קו עם שיפוע m=25 המכיל את הנקודה (10,3). כתוב את המשוואה בצורת שיפוע — יירוט.

תשובה

נתון זה הוא טבלה הכוללת שלוש עמודות וארבע שורות. העמודה הראשונה היא עמודת כותרת, והיא מכילה את השמות והמספרים של כל שלב. העמודה השנייה מכילה הוראות כתובות נוספות. העמודה השלישית מכילה מתמטיקה. בשורה הראשונה של הטבלה, התא הראשון משמאל קורא: "שלב 1. זהה את המדרון." הטקסט בתא השני קורא: "השיפוע ניתן". התא השלישי מכיל שיפוע של קו, המוגדר כ- m שווה ל -2 חמישיות.
בשורה השנייה, התא הראשון קורא: "שלב 2. תזהה את הנקודה". התא השני קורא: "הנקודה ניתנת". התא השלישי מכיל את הזוג המסודר (10, 3). כתב עליון x תחתי 1 כתוב מעל 10, וכתב עליון y 1 כתוב מעל 3.
בשורה השלישית, התא הראשון קורא: "שלב 3. החלף את הערכים לצורת שיפוע הנקודה, y מינוס y תחתי 1 שווה ל- m כפול x מינוס x תחתי 1 בסוגריים." השורה העליונה של התא השני נותרה ריקה. התא השלישי כולל את צורת שיפוע הנקודה שנכתבה שוב: y מינוס y תחתי 1 שווה m כפול x מינוס x תחתי 1 בסוגריים. מתחת לזה נמצאת צורת שיפוע הנקודה עם 10 שהוחלפו ב- x תחתי 1, 3 מוחלפים ב- y תת 1 ו -2 חמישיות שהוחלפו ב- m: y מינוס 3 שווה 2 חמישיות פעמים x מינוס 10 בסוגריים. שורה אחת למטה, ההוראות בתא השני אומרות: "פשט". בתא השלישי הוא y מינוס 3 שווה 2 חמישיות x מינוס 4.
בשורה הרביעית, התא הראשון קורא: "כתוב את המשוואה בצורת יירוט שיפוע." התא השני ריק. בתא השלישי הוא y שווה 2 חמישיות x מינוס 1.

תרגיל 4.6.8

מצא משוואה של קו עם שיפוע m=56 ומכיל את הנקודה (6,3).

תשובה

y=56x2

תרגיל 4.6.9

מצא משוואה של קו עם שיפוע m=23 ומכיל את הנקודה (9,2).

תשובה

y=23x4

מצא משוואה של קו בהתחשב בשיפוע ובנקודה.
  1. זהה את המדרון.
  2. זהה את הנקודה.
  3. החלף את הערכים לצורת שיפוע הנקודה,. yy1=m(xx1)
  4. כתוב את המשוואה בצורת שיפוע — יירוט.
תרגיל 4.6.10

מצא משוואה של קו עם שיפוע m=13 המכיל את הנקודה (6, -4). כתוב את המשוואה בצורת שיפוע — יירוט.

תשובה

מכיוון שאנו מקבלים נקודה ושיפוע הקו, אנו יכולים להחליף את הערכים הדרושים לנקודה - צורת שיפוע,. yy1=m(xx1)

זהה את המדרון. .
זהה את הנקודה. .
החלף את הערכים לתוךyy1=m(xx1). .
  .
לפשט. .
כתוב בצורה מדרון — יירוט. .
תרגיל 4.6.11

מצא משוואה של קו עם שיפוע m=25 ומכיל את הנקודה (10, -5).

תשובה

y=25x1

תרגיל 4.6.12

מצא משוואה של קו עם שיפועm=34, ומכיל את הנקודה (4, −7).

תשובה

y=34x4

תרגיל 4.6.13

מצא משוואה של קו אופקי המכיל את הנקודה (-1,2). כתוב את המשוואה בצורת שיפוע — יירוט.

תשובה

לכל קו אופקי יש שיפוע 0. אנחנו יכולים להחליף את השיפוע ואת הנקודות לתוך הנקודה - צורת שיפוע,. yy1=m(xx1)

זהה את המדרון. .
זהה את הנקודה. .
החלף את הערכים לתוךyy1=m(xx1). .
  .
לפשט. .
  .
  .
כתוב בצורה מדרון — יירוט. זה בצורת y, אבל יכול להיות כתוב y = 0x+2.
האם בסופו של דבר קיבלנו צורה של קו אופקי, y=a?
תרגיל 4.6.14

מצא משוואה של קו אופקי המכיל את הנקודה (-3,8).

תשובה

y = 8

תרגיל 4.6.15

מצא משוואה של קו אופקי המכיל את הנקודה (-1,4).

תשובה

y = 4

מצא משוואה של הקו בהינתן שתי נקודות

כאשר נאספים נתונים מהעולם האמיתי, ניתן ליצור מודל ליניארי משתי נקודות נתונים. בדוגמה הבאה נראה כיצד למצוא משוואה של קו כאשר ניתנות שתי נקודות בלבד.

יש לנו עד כה שתי אפשרויות למציאת משוואה של קו: שיפוע - יירוט או נקודה - שיפוע. מכיוון שנדע שתי נקודות, יהיה הגיוני יותר להשתמש בצורת הנקודה-שיפוע.

אבל אז אנחנו צריכים את המדרון. האם נוכל למצוא את המדרון עם שתי נקודות בלבד? כן. ואז, ברגע שיש לנו את המדרון, נוכל להשתמש בו ובאחת מהנקודות הנתונות כדי למצוא את המשוואה.

תרגיל 4.6.16: Find an Equation of a Line Given Two Points

מצא משוואה של קו המכיל את הנקודות (5,4) ו- (3,6). כתוב את המשוואה בצורת שיפוע — יירוט.

תשובה

נתון זה הוא טבלה הכוללת שלוש עמודות וארבע שורות. העמודה הראשונה היא עמודת כותרת, והיא מכילה את השמות והמספרים של כל שלב. העמודה השנייה מכילה הוראות כתובות נוספות. העמודה השלישית מכילה מתמטיקה. בשורה הראשונה של הטבלה, התא הראשון משמאל קורא: "שלב 1. מצא את המדרון באמצעות הנקודות הנתונות." הטקסט בתא השני כתוב: "כדי להשתמש בצורת שיפוע הנקודה, אנו מוצאים תחילה את המדרון." התא השלישי מכיל שיפוע של נוסחת קו: m שווה ל- y superscript 2 מינוס y כתב עליון 1 מחולק על ידי x כתב עליון 2 מינוס x כתב עליון 1. מתחת לזה m שווה 6 מינוס 4 חלקי 3 מינוס 5. מתחת לזה m שווה 2 חלקי שלילי 2. מתחת לזה M שווה לשלילי 1.בשורה השנייה, התא הראשון קורא: "שלב 2. בחר נקודה אחת." התא השני קורא: "בחר אחת מהנקודות". התא השלישי מכיל את הזוג המסודר (5, 4) עם כתב עליון x תחתי 1 מעל 5 וכתב עליון y 1 על 4.בשורה השלישית, התא הראשון קורא: "שלב 3. החלף את הערכים לצורת שיפוע הנקודה, y מינוס y תחתי 1 שווה ל- m כפול x מינוס x תחתי 1 בסוגריים." השורה העליונה של התא השני נותרה ריקה. התא השלישי מכיל את צורת שיפוע הנקודה, y מינוס y תחתי 1 שווה m כפול x מינוס x תחתי 1 בסוגריים. מתחת לזה נמצאת צורת שיפוע הנקודה עם 5 שהוחלפו ב- x תחתי 1, 4 מוחלפים ב- y תת-כתב 1, ושלילי 1 מוחלף ב- m: y מינוס 4 שווה לשלילי 1 פעמים x מינוס 5 בסוגריים. מתחת לזה y מינוס 4 שווה x שלילי פלוס 5.בשורה הרביעית, התא הראשון קורא: "שלב 4. כתוב את המשוואה בצורה של יירוט שיפוע." התא השני ריק. התא השלישי מכיל y שווה x שלילי פלוס 9.

השתמש בנקודה (3,6) וראה שאתה מקבל את אותה משוואה.

תרגיל 4.6.17

מצא משוואה של קו המכיל את הנקודות (3,1) ו- (5,6).

תשובה

y=52x132

תרגיל 4.6.18

מצא משוואה של קו המכיל את הנקודות (1,4) ו- (6,2).

תשובה

y=25x+225

מצא משוואה של קו בהינתן שתי נקודות.
  1. מצא את המדרון באמצעות הנקודות הנתונות.
  2. בחר נקודה אחת.
  3. החלף את הערכים לצורת שיפוע הנקודה,. yy1=m(xx1)
  4. כתוב את המשוואה בצורת שיפוע — יירוט.
תרגיל 4.6.19

מצא משוואה של קו המכיל את הנקודות (-3, -1) ו- (2, -2). כתוב את המשוואה בצורת שיפוע — יירוט.

תשובה

מכיוון שיש לנו שתי נקודות, נמצא משוואה של הקו באמצעות צורת הנקודה-שיפוע. הצעד הראשון יהיה למצוא את המדרון.

מצא את שיפוע הקו דרך (-3, -1) ו- (2, -2). .
  .
  .
  .
בחר אחת מהנקודה. .
החלף את הערכים לתוךyy1=m(xx1). .
  .
  .
כתוב בצורה מדרון — יירוט. .
תרגיל 4.6.20

מצא משוואה של קו המכיל את הנקודות (-2, -4) ו- (1, -3).

תשובה

y=13x103

תרגיל 4.6.21

מצא משוואה של קו המכיל את הנקודות (-4, -3) ו- (1, -5).

תשובה

y=25x235

תרגיל 4.6.22

מצא משוואה של קו המכיל את הנקודות (-2,4) ו- (-2, -3). כתוב את המשוואה בצורת שיפוע — יירוט.

תשובה

שוב, הצעד הראשון יהיה למצוא את המדרון.

 Find the slope of the line through (2,4) and (2,3)m=y2x1x2x1m=342(2)m=70 The slope is undefined. 

זה אומר לנו שזה קו אנכי. לשתי הנקודות שלנו יש קואורדינטת x של -2. אז משוואת הקו שלנו היא איקס=−2. מכיוון שאין yy, איננו יכולים לכתוב אותו בצורה של שיפוע - יירוט.

ייתכן שתרצה לשרטט גרף באמצעות שתי הנקודות הנתונות. האם הגרף מסכים עם המסקנה שלנו שמדובר בקו אנכי?

תרגיל 4.6.23

מצא משוואה של קו המכיל את הנקודות (5,1) ו- (5, -4).

תשובה

איקס = 5

תרגיל 4.6.24

מצא משוואה של קו המכיל את הנקודות (-4,4) ו- (-4,3).

תשובה

איקס=−4

ראינו שאנחנו יכולים להשתמש בצורת השיפוע - יירוט או בצורת השיפוע של נקודה כדי למצוא משוואה של קו. איזו צורה אנו משתמשים תהיה תלויה במידע שניתן לנו. זה מסוכם בטבלה4.6.1.

כדי לכתוב משוואה של שורה
אם ניתן: שימוש: טופס:
שיפוע ו- y -יירוט מדרון — יירוט y = mx+ב
שיפוע ונקודה נקודה — שיפוע yy1=m(xx1)
שתי נקודות נקודה — שיפוע yy1=m(xx1)
טבלה 4.6.1

מצא משוואה של קו מקביל לקו נתון

נניח שאנחנו צריכים למצוא משוואה של קו שעובר דרך נקודה מסוימת והוא מקביל לקו נתון. אנו יכולים להשתמש בעובדה שלקווים מקבילים יש שיפוע זהה. אז תהיה לנו נקודה והמדרון - בדיוק מה שאנחנו צריכים כדי להשתמש במשוואת השיפוע של הנקודה.

ראשית בואו נסתכל על זה בצורה גרפית.

הגרף מציג את הגרף של y = 2x−3. אנו רוצים לשרטט קו מקביל לקו זה ועובר בנקודה (-2,1).

הגרף מציג את מישור הקואורדינטות x y. צירי ה- x וה- y עוברים כל אחד מ- 7 ל- 7 שלילי. הקו שהמשוואה שלו היא y שווה ל- 2x מינוס 3 מיירט את ציר ה- y ב- (0, שלילי 3) ומיירט את ציר ה- x ב (3 חצאים, 0). במקום אחר בגרף, הנקודה (שלילית 2, 1) מתווה.
איור 4.6.1

אנו יודעים שלקווים מקבילים יש שיפוע זהה. אז לקו השני יהיה שיפוע זהה לזה של y = 2x−3. המדרון הזה הואm=2. נשתמש בסימון m כדי לייצג את שיפוע הקו המקביל לקו עם שיפוע m (שימו לב שהתת-המשנה נראה כמו שני קווים מקבילים.)

הקו השני יעבור דרך (-2,1) ויש לו m = 2. כדי לתאר את הקו, אנו מתחילים ב- (-2,1) וסופרים את העלייה והריצה. עם m = 2 (אוm=21), אנו סופרים את העלייה 2 ואת הריצה 1. אנו מותחים את הקו.

הגרף מציג את מישור הקואורדינטות x y. צירי ה- x וה- y עוברים כל אחד מ- 7 ל- 7 שלילי. הקו שהמשוואה שלו היא y שווה ל- 2x מינוס 3 מיירט את ציר ה- y ב- (0, שלילי 3) ומיירט את ציר ה- x ב (3 חצאים, 0). הנקודות (שליליות 2, 1) ו- (שליליות 1, 3) מתוות. קו שני, במקביל לראשון, מיירט את ציר ה- x ב (שלילי 5 חצאים, 0), עובר דרך הנקודות (שלילי 2, 1) ו- (שלילי 1, 3), ומיירט את ציר ה- y ב- (0, 5).
איור 4.6.2

האם הקווים נראים מקבילים? האם הקו השני עובר דרך (-2,1)?

עכשיו, בואו נראה איך לעשות את זה באופן אלגברי.

אנו יכולים להשתמש בצורת השיפוע - יירוט או בצורת שיפוע הנקודה כדי למצוא משוואה של קו. כאן אנו יודעים נקודה אחת ויכולים למצוא את המדרון. אז נשתמש בצורת הנקודה-שיפוע.

תרגיל 4.6.25: How to Find an Equation of a Line Parallel to a Given Line

מצא משוואה של קו מקביל ל y = 2x−3 המכיל את הנקודה (-2,1). כתוב את המשוואה בצורת שיפוע — יירוט.

תשובה

נתון זה הוא טבלה הכוללת שלוש עמודות וארבע שורות. העמודה הראשונה היא עמודת כותרת, והיא מכילה את השמות והמספרים של כל שלב. העמודה השנייה מכילה הוראות כתובות נוספות. העמודה השלישית מכילה מתמטיקה. בשורה הראשונה של הטבלה, התא הראשון משמאל קורא: "שלב 1. מצא את השיפוע של הקו הנתון." התא השני קורא: "הקו הוא בצורת יירוט שיפוע. y שווה 2x מינוס 3." התא השלישי מכיל שיפוע של קו, המוגדר כ- m שווה ל- 2.בשורה השנייה, התא הראשון קורא: "שלב 2. מצא את שיפוע הקו המקביל." בתא השני כתוב "לקווים מקבילים יש שיפוע זהה." התא השלישי מכיל את שיפוע הקו המקביל, המוגדר כ- m מקביל שווה ל- 2.בשורה השלישית, התא הראשון קורא "שלב 3. תזהה את הנקודה". התא השני קורא "הנקודה הנתונה היא (שלילית 2, 1)." התא השלישי מכיל את הזוג המסודר (שלילי 2, 1) עם כתב עליון x תחתי 1 מעל שלילי 2 וכתב משנה y 1 מעל 1.בשורה הרביעית, התא הראשון קורא "שלב 4. החלף את הערכים לצורת שיפוע הנקודה, y מינוס y תחתי 1 שווה ל- m כפול x מינוס x תחתי 1 בסוגריים." החלק העליון של התא השני ריק. התא השלישי מכיל את צורת שיפוע הנקודה, y מינוס y תחתי 1 שווה m כפול x מינוס x תחתי 1 בסוגריים. להלן הטופס עם 2 שלילי שהוחלף ב- x תחתי 1, 1 הוחלף ב- y subscript 1 ו- 2 שהוחלף ב- m: y מינוס 1 שווה פי 2 x מינוס שלילי 2 בסוגריים. שורה אחת למטה, הטקסט בתא השני אומר "פשט". העמודה הימנית מכילה y מינוס 1 שווה 2 פעמים x פלוס 2. מתחת לזה y מינוס 1 שווה 2x פלוס 4.בשורה החמישית, התא הראשון אומר "שלב 5. כתוב את המשוואה בצורה של יירוט שיפוע." התא השני ריק. התא השלישי מכיל y שווה 2x פלוס 5.

האם המשוואה הזו הגיונית? מהו יירוט ה- y של הקו? מהו המדרון?

תרגיל 4.6.26

מצא משוואה של קו מקביל לקו y = 3x+1 המכיל את הנקודה (4,2). כתוב את המשוואה בצורת שיפוע — יירוט.

תשובה

y=3איקס−10

תרגיל 4.6.27

מצא משוואה של קו מקביל לקו y=12x3 המכיל את הנקודה (6,4).

תשובה

y=12x+1

מצא משוואה של קו מקביל לקו נתון.
  1. מצא את השיפוע של הקו הנתון.
  2. מצא את שיפוע הקו המקביל.
  3. זהה את הנקודה.
  4. החלף את הערכים לצורת הנקודה-שיפוע,. yy1=m(xx1)
  5. כתוב את המשוואה בצורת שיפוע — יירוט.

מצא משוואה של קו בניצב לקו נתון

עכשיו, בואו ניקח בחשבון קווים בניצב. נניח שאנחנו צריכים למצוא קו עובר דרך נקודה מסוימת אשר ניצב לקו נתון. אנו יכולים להשתמש בעובדה שלקווים בניצב יש שיפועים שהם הדדיות שליליות. נשתמש שוב במשוואת נקודה-שיפוע, כמו שעשינו בקווים מקבילים.

הגרף מציג את הגרף של y = 2x−3. כעת, אנו רוצים לשרטט קו בניצב לקו זה ועובר דרכו (-2,1).

הגרף מציג את מישור הקואורדינטות x y. צירי ה- x וה- y עוברים כל אחד מ- 7 ל- 7 שלילי. הקו שהמשוואה שלו היא y שווה ל- 2x מינוס 3 מיירט את ציר ה- y ב- (0, שלילי 3) ומיירט את ציר ה- x ב (3 חצאים, 0). במקום אחר בגרף, הנקודה (שלילית 2, 1) מתווה.
איור 4.6.3

אנו יודעים שלקווים בניצב יש שיפועים שהם הדדיות שליליות. נשתמש בסימון m כדי לייצג את שיפוע הקו הניצב לקו עם שיפוע m (שימו לב שהתת-המשנה נראה כמו הזוויות הנכונות שנעשו על ידי שני קווים בניצב.)

y=2x3 perpendicular line m=2m=12

כעת אנו יודעים שהקו הניצב יעבור דרכו (-2,1) עם. m=12

כדי לתאר את הקו, נתחיל ב- (-2,1) ונספור את העלייה -1 ואת הריצה 2. ואז אנו מציירים את הקו.

הגרף מציג את מישור הקואורדינטות x y. צירי ה- x וה- y עוברים כל אחד מ- 7 ל- 7 שלילי. הקו שהמשוואה שלו היא y שווה ל- 2x מינוס 3 מיירט את ציר ה- y ב- (0, שלילי 3) ומיירט את ציר ה- x ב (3 חצאים, 0). במקום אחר, הנקודה (שלילית 2, 1) מתווה. קו נוסף בניצב לקו הראשון עובר דרך הנקודה (שלילי 2, 1) ומיירט את צירי x ו- y ב- (0, 0). קו אדום עם חץ משתרע שמאלה מ (0, 0) ל (שלילי 2, 0), ואז משתרע למעלה ומסתיים ב (שלילי 2, 1), ויוצר משולש ימין עם הקו השני כמו hypotenuse.
איור 4.6.4

האם הקווים נראים בניצב? האם הקו השני עובר דרך (-2,1)?

עכשיו, בואו נראה איך לעשות את זה באופן אלגברי. אנו יכולים להשתמש בצורת השיפוע - יירוט או בצורת שיפוע הנקודה כדי למצוא משוואה של קו. בדוגמה זו אנו מכירים נקודה אחת, ויכולים למצוא את השיפוע, ולכן נשתמש בצורת הנקודה-שיפוע.

תרגיל 4.6.28

מצא משוואה של קו בניצב ל- y = 2x−3 המכיל את הנקודה (-2,1). כתוב את המשוואה בצורת שיפוע — יירוט.

תשובה

נתון זה הוא טבלה הכוללת שלוש עמודות וארבע שורות. העמודה הראשונה היא עמודת כותרת, והיא מכילה את השמות והמספרים של כל שלב. העמודה השנייה מכילה הוראות כתובות נוספות. העמודה השלישית מכילה מתמטיקה. בשורה הראשונה של הטבלה, התא הראשון משמאל קורא: "שלב 1. מצא את השיפוע של הקו הנתון." התא השני קורא: "הקו הוא בצורת יירוט שיפוע. y שווה 2x מינוס 3." התא השלישי מכיל שיפוע של קו, המוגדר כ- m שווה ל- 2.
בשורה השנייה, התא הראשון קורא "שלב 2. מצא את שיפוע הקו הניצב." התא השני קורא "שיפועי הקווים הניצבים הם הדדיות שליליות." התא השלישי מכיל m שווה למחצית שלילית.
בשורה השלישית, התא הראשון קורא "שלב 3. תזהה את הנקודה". התא השני קורא "הנקודה הנתונה היא (שלילית 2, 1)." התא השלישי מכיל את הזוג המסודר (שלילי 2, 1) עם כתב עליון x תחתי 1 מעל שלילי 2 וכתב משנה y 1 מעל 1.
בשורה הרביעית, התא הראשון אומר "שלב 4. החלף את הערכים לצורת שיפוע הנקודה." התא השני אומר, "פשט". התא השלישי מציג עבודה זו, מסתיים ב- y - 1 = - 1/2 x - 1.
בשורה החמישית, התא הראשון אומר "שלב 5. כתוב את המשוואה בצורה של יירוט שיפוע." התא השני ריק. התא השלישי מכיל y שווה חצי x שלילי.

תרגיל 4.6.29

מצא משוואה של קו בניצב לקו y = 3x+1 המכיל את הנקודה (4,2). כתוב את המשוואה בצורת שיפוע — יירוט.

תשובה

y=13x+103

תרגיל 4.6.30

מצא משוואה של קו בניצב לקו y=12x3 המכיל את הנקודה (6,4).

תשובה

y = −2איקס+16

מצא משוואה של קו בניצב לקו נתון.
  1. מצא את השיפוע של הקו הנתון.
  2. מצא את שיפוע הקו הניצב.
  3. זהה את הנקודה.
  4. החלף את הערכים לצורת הנקודה-שיפוע,. yy1=m(xx1)
  5. כתוב את המשוואה בצורת שיפוע — יירוט.
תרגיל 4.6.31

מצא משוואה של קו בניצב ל איקס=5 המכיל את הנקודה (3, −2). כתוב את המשוואה בצורת שיפוע — יירוט.

תשובה

שוב, מכיוון שאנו מכירים נקודה אחת, אפשרות הנקודה-שיפוע נראית מבטיחה יותר מאופציית היירוט של המדרון. אנו זקוקים למדרון כדי להשתמש בטופס זה, ואנו יודעים שהקו החדש יהיה בניצב ל- x = 5. קו זה הוא אנכי, כך הניצב שלו יהיה אופקי. זה אומר לנו אתm=0.

 Identify the point. (3,2) Identify the slope of the perpendicular line. m=0 Substitute the values into yy1=m(xx1).yy1=m(xx1)y(2)=0(x3) Simplify. y+2=0y=2

שרטט את הגרף של שתי השורות. האם הם נראים בניצב?

תרגיל 4.6.32

מצא משוואה של קו הניצב לקו איקס=4 המכיל את הנקודה (4, −5). כתוב את המשוואה בצורת שיפוע — יירוט.

תשובה

y=−5

תרגיל 4.6.33

מצא משוואה של קו הניצב לקו איקס=2 המכיל את הנקודה (2, −1). כתוב את המשוואה בצורת שיפוע — יירוט.

תשובה

y=−1

בתרגיל 4.6.31 השתמשנו בצורת הנקודה-שיפוע כדי למצוא את המשוואה. יכולנו להסתכל על זה בצורה אחרת.

אנו רוצים למצוא קו הניצב ל איקס=5 המכיל את הנקודה (3, −2). הגרף מראה לנו את הקו איקס=5 ואת הנקודה (3, −2).

הגרף מציג את מישור הקואורדינטות x y. צירי ה- x וה- y עוברים כל אחד מ- 7 ל- 7 שלילי. הקו שהמשוואה שלו היא x שווה ל -5 מיירט את ציר ה- x ב- (5, 0) ועובר במקביל לציר ה- y. במקום אחר בגרף, הנקודה (3, שלילית 2) מתווה.
איור 4.6.5

אנו יודעים שכל קו בניצב לקו אנכי הוא אופקי, ולכן נשרטט את הקו האופקי דרך (3, -2).

הגרף מציג את מישור הקואורדינטות x y. צירי ה- x וה- y עוברים כל אחד מ- 7 ל- 7 שלילי. הקו שהמשוואה שלו היא x שווה ל -5 מיירט את ציר ה- x ב- (5, 0) ועובר במקביל לציר ה- y. במקום אחר בגרף, הנקודות (שלילי 2, שלילי 2), (0, שלילי 2), (3, שלילי 2) ו- (6, שלילי 2) מתוארות. קו מאונך לקו הקודם עובר דרך אותן נקודות ועובר במקביל לציר ה- x.
איור 4.6.6

האם הקווים נראים בניצב?

אם נסתכל על כמה נקודות בקו האופקי הזה, נבחין שלכולן יש y -קואורדינטות של -2. אז, משוואת הקו הניצב לקו האנכי איקס=5 היא y = −2.

תרגיל 4.6.34

מצא משוואה של קו הניצב ל- y = −4 המכיל את הנקודה (-4,2). כתוב את המשוואה בצורת שיפוע — יירוט.

תשובה

הקו y = −4 הוא קו אופקי. כל קו הניצב אליו חייב להיות אנכי, בצורה איקס=א מכיוון שהקו הניצב הוא אנכי ועובר דרכו (-4,2), לכל נקודה עליו יש קואורדינטה x של -4. המשוואה של הקו הניצב היא איקס=−4. אולי תרצה לשרטט את השורות. האם הם נראים בניצב?

תרגיל 4.6.35

מצא משוואה של קו הניצב לקו y = 1 המכיל את הנקודה (-5,1). כתוב את המשוואה בצורת שיפוע — יירוט.

תשובה

איקס=−5

תרגיל 4.6.36

מצא משוואה של קו הניצב לקו y = −5 המכיל את הנקודה (-4, -5).

תשובה

איקס=−4

הערה

גש למשאב מקוון זה לקבלת הדרכה ותרגול נוספים עם מציאת המשוואה של קו.

מושגי מפתח

  • למצוא משוואה של קו בהינתן השיפוע ונקודה
    1. זהה את המדרון.
    2. זהה את הנקודה.
    3. החלף את הערכים לצורת שיפוע הנקודה,. yy1=m(xx1)
    4. כתוב את המשוואה בצורת יירוט שיפוע.
  • למצוא משוואה של קו בהינתן שתי נקודות
    1. מצא את המדרון באמצעות הנקודות הנתונות.
    2. בחר נקודה אחת.
    3. החלף את הערכים לצורת שיפוע הנקודה,. yy1=m(xx1)
    4. כתוב את המשוואה בצורת יירוט שיפוע.
  • לכתוב ומשוואת שורה
    • אם ניתן שיפוע ו y -יירוט, השתמש בצורת שיפוע -יירוט. y=mx+b
    • אם ניתן שיפוע ונקודה, השתמש בצורת נקודה-שיפוע. yy1=m(xx1)
    • אם ניתנות שתי נקודות, השתמש בצורת נקודה-שיפוע. yy1=m(xx1)
  • למצוא משוואה של קו מקביל לקו נתון
    1. מצא את השיפוע של הקו הנתון.
    2. מצא את שיפוע הקו המקביל.
    3. זהה את הנקודה.
    4. החלף את הערכים לצורת שיפוע הנקודה,. yy1=m(xx1)
    5. כתוב את המשוואה בצורת יירוט שיפוע.
  • למצוא משוואה של קו בניצב לקו נתון
    1. מצא את השיפוע של הקו הנתון.
    2. מצא את שיפוע הקו הניצב.
    3. זהה את הנקודה.
    4. החלף את הערכים לצורת שיפוע הנקודה,. yy1=m(xx1)
    5. כתוב את המשוואה בצורת יירוט שיפוע.

רשימת מילים

צורת נקודה-שיפוע
צורת הנקודה-שיפוע של משוואה של קו עם שיפוע מ"מ ומכילה את הנקודה (x1,y1) היא. yy1=m(xx1)