Processing math: 81%
Skip to main content
Library homepage
 
Global

1.3: השתמש בשפת האלגברה

מטרות למידה

בסוף פרק זה תוכל:

  • השתמש במשתנים ובסמלים אלגבריים
  • פשט ביטויים לפי סדר הפעולות
  • הערך ביטוי
  • זהה ושלב מונחים דומים
  • תרגם ביטוי באנגלית לביטוי אלגברי

השתמש במשתנים ובסמלים אלגבריים

נניח שהשנה גרג בן 20 שנים ואלכס הוא23. אתה יודע שאלכס מבוגר מגרג 3 בשנים. כשגרג היה12, אלכס היה15. כאשר גרג יהיה35, אלכס יהיה38. לא משנה מה גילו של גרג, הגיל של אלכס תמיד יהיה 3 שנים יותר, נכון? בשפת האלגברה אנו אומרים שגילו של גרג וגילו של אלכס הם משתנים 3 וזה קבוע. הגילאים משתנים ("משתנים") אך 3 השנים ביניהם תמיד נשארות זהות ("קבועות"). מכיוון שגילו של גרג וגילו של אלכס תמיד יהיו שונים 3 בשנים, 3 הוא הקבוע. באלגברה אנו משתמשים באותיות האלף-בית כדי לייצג משתנים. אז אם נקרא לגילו של גרגg, נוכל לייצג g+3g+3 את גילו של אלכס. ראה טבלה1.3.1.

טבלה 1.3.1
גילו של גרג הגיל של אלכס
12 15
20 23
35 38
g g+3

האותיות המשמשות לייצוג הגילאים המשתנים הללו נקראות משתנים. האותיות הנפוצות ביותר עבור משתנים הן x,y,a,b, וc.

הגדרה: משתנה

משתנה הוא אות המייצגת מספר שערכו עשוי להשתנות.

הגדרה: קבוע

קבוע הוא מספר שערכו תמיד נשאר זהה.

כדי לכתוב אלגברית, אנו זקוקים לכמה סמלי פעולה כמו גם מספרים ומשתנים. ישנם מספר סוגים של סמלים בהם נשתמש.

ישנן ארבע פעולות חשבון בסיסיות: חיבור, חיסור, כפל וחילוק. נפרט את הסמלים המשמשים לציון פעולות אלה להלן (טבלה1.3.2). סביר להניח שתזהו כמה מהם.

טבלה 1.3.2
מבצע סימון תגיד: התוצאה היא...
תוספת a+b aפלוס b סכום a ו b
חיסור ab aמינוס b ההבדל של a ו b
כפל a·b,ab,(a)(b),(a)b,a(b) aפעמים b המוצר של a ו b
חטיבה a÷b,a/b,ab,ba aמחולק על ידי b המנה של a וb, a נקרא דיבידנד, והוא b נקרא המחלק

אנו מבצעים פעולות אלה בשני מספרים. כאשר מתרגמים מצורה סמלית לאנגלית, או מאנגלית לצורה סמלית, שימו לב למילים "של" ו- "ו".

  • ההבדל בין 2 פירושו לחסר2, 9 ובמילים אחרות, 9 מינוס2, אשר אנו כותבים באופן סמלי כמו. 9 92
  • התוצר של 4 8 ואמצעים מתרבים8, 4 ובמילים אחרות 4 פעמים8, שאנו כותבים באופן סמלי כ. 48

באלגברה, סמל הצלב×, אינו משמש להצגת כפל מכיוון שסמל זה עלול לגרום לבלבול. האם 3xy הכוונה 3×y ('שלוש y פעמים') או 3xy (שלוש x פעמיםy)? כדי להבהיר, השתמש או בסוגריים לכפל.

כאשר לשני כמויות יש אותו ערך, אנו אומרים שהם שווים ומחברים אותם עם סימן שווה.

סמל שוויון

a=bנקרא "aשווה לb"

הסמל = נקרא סימן שווה.

בשורת המספרים המספרים גדלים ככל שהם עוברים משמאל לימין. ניתן להשתמש בשורת המספרים כדי להסביר את הסמלים < ו>".

אי שוויון

a<bנקרא "aהוא פחות מb"

aנמצא b משמאל לשורת המספרים

אין טקסט Alt
איור 1.3.1

a>bנקרא "aהוא גדול מb"

aנמצא b מימין לשורת המספרים

אין טקסט Alt
איור 1.3.2

הביטויים a<b או a>b ניתן לקרוא משמאל לימין או מימין לשמאל, אם כי באנגלית אנו קוראים בדרך כלל משמאל לימין טבלה1.3.3. באופן כללי, a<b שווה ערך לb>a. לדוגמה 7<11 שווה ערך ל11>7. והוא a>b שווה ערך לb<a. לדוגמה 17>4 שווה ערך ל4<17.

טבלה 1.3.3
סמלי אי שוויון מילים
ab aאינו שווה ל b
a<b aהוא פחות מ b
ab aהוא פחות או שווה ל b
a>b aהוא גדול מ b
ab aגדול או לא שווה b
תרגיל 1.3.1

תרגם מאלגברה לאנגלית:

  1. 1726
  2. 8173
  3. 12>27÷3
  4. y+7<19
תשובה
  1. 1726, 17 הוא פחות או שווה ל 26
  2. 8173, 8 אינו שווה 17 למינוס 3
  3. 12>27÷3, 12 הוא גדול יותר מאשר 27 מחולק על ידי 3
  4. y+7<19, y פלוס 7 הוא פחות מ 19
תרגיל 1.3.2

תרגם מאלגברה לאנגלית:

  1. 1427
  2. 1928
  3. 12>4÷2
  4. x7<1
תשובה
  1. 14הוא פחות או שווה ל 27
  2. 19מינוס 2 אינו שווה ל 8
  3. 12הוא גדול יותר מאשר 4 מחולק על ידי 2
  4. xמינוס 7 הוא פחות מ 1
תרגיל 1.3.3

תרגם מאלגברה לאנגלית:

  1. 1915
  2. 7=125
  3. 15÷3<8
  4. y+3<6
תשובה
  1. 19גדול אז או שווה ל 15
  2. 7שווה 12 למינוס 5
  3. 15מחולק על ידי 3 הוא פחות מ 8
  4. yפלוס 3 גדול מ 6

סמלי קיבוץ באלגברה דומים מאוד לפסיקים, נקודתיים וסימני פיסוק אחרים באנגלית. הם עוזרים להבהיר אילו ביטויים יש לשמור יחד ולהפריד מביטויים אחרים. נציג כעת שלושה סוגים.

קיבוץ סמלים

Parentheses()Brackets[]Braces{}

להלן מספר דוגמאות לביטויים הכוללים סמלי קיבוץ. אנו נפשט ביטויים כאלה בהמשך פרק זה.

8(148)213[2+4(98)]24÷{132[1(65)+4]}

מה ההבדל באנגלית בין משפט למשפט? ביטוי מבטא מחשבה אחת שאינה שלמה בפני עצמה, אבל משפט עושה הצהרה מלאה. "לרוץ מהר מאוד" הוא ביטוי, אבל "שחקן הכדורגל רץ מהר מאוד" הוא משפט. למשפט יש נושא ופועל. באלגברה יש לנו ביטויים ומשוואות.

ביטוי

ביטוי הוא מספר, משתנה או שילוב של מספרים ומשתנים המשתמשים בסמלי פעולה.

ביטוי הוא כמו ביטוי באנגלית. הנה כמה דוגמאות לביטויים:

טבלה 1.3.4
ביטוי מילים ביטוי באנגלית
3+5 3פלוס 5 סכום של שלוש וחמש
n1 nמינוס אחד ההבדל של n ואחד
67 6פעמים 7 תוצר של שש ושבע
xy xמחולק על ידי y המנה של ו x y

שימו לב שהביטויים באנגלית אינם יוצרים משפט שלם מכיוון שלביטוי אין פועל. משוואה היא שני ביטויים המקושרים לסימן שווה. כשאתה קורא את המילים שהסמלים מייצגים במשוואה, יש לך משפט שלם באנגלית. הסימן השווה נותן את הפועל.

הגדרה: משוואה

משוואה היא שני ביטויים המחוברים בסימן שווה.

הנה כמה דוגמאות למשוואות.

טבלה 1.3.5
משוואה משפט באנגלית
3+5=8 הסכום של שלוש וחמש שווה לשמונה
n1=14 nמינוס אחד שווה ארבע עשרה
67=42 התוצר של שש ושבע שווה לארבעים ושתיים
x=53 xשווה לחמישים ושלוש
y+9=2y3 yפלוס תשע שווה לשניים y מינוס שלוש
תרגיל 1.3.4

קבע אם כל אחד מהם הוא ביטוי או משוואה:

  1. 2(x+3)=10
  2. 4(y1)+1
  3. x÷25
  4. y+8=40
תשובה
  1. 2(x+3)=10. זו משוואה - שני ביטויים קשורים בסימן שווה.
  2. 4(y1)+1. זהו ביטוי - אין סימן שווה.
  3. x÷25. זהו ביטוי - אין סימן שווה.
  4. y+8=40. זו משוואה - שני ביטויים קשורים בסימן שווה.
תרגיל 1.3.5

קבע אם כל אחד מהם הוא ביטוי או משוואה:

  1. 3(x7)=27
  2. 5(4y2)7
תשובה
  1. משוואה
  2. ביטוי
תרגיל 1.3.6

קבע אם כל אחד מהם הוא ביטוי או משוואה:

  1. y3÷14
  2. 4x6=22
תשובה
  1. ביטוי
  2. משוואה

נניח שאנחנו צריכים להכפיל תשעה גורמים של2. אנחנו יכולים לכתוב את זה כ222222222. זה מייגע וזה יכול להיות קשה לעקוב אחר כל אותם 2s, אז אנחנו משתמשים במעריכים. אנחנו כותבים 222 כמו 23 222222222 וכמו29. בביטויים כמו23, 2 נקרא הבסיס וה 3 נקרא המעריך. המעריך אומר לנו כמה פעמים אנחנו צריכים להכפיל את הבסיס.

המספר שתיים מוצג עם מספר שלוש מוצפן מימין לו. חץ נמשך למספר שתיים ומסומן "בסיס" בעוד חץ אחר נמשך לשלושה הכתובים ותווית "אקספוננט". משמעות הדבר היא להכפיל שלושה גורמים של 2, כמו 2 פעמים 2 פעמים 2.
איור 1.3.3

אנו קוראים 23 כ"שניים לכוח השלישי "או" שני קוביות".

אנו אומרים 23 שהוא בסימון אקספוננציאלי 222 ונמצא בסימון מורחב.

סימון אקספוננציאלי

anפירושו תוצר של n גורמים שלa.

a מוצג עם כתב עליון n מימין לו. חץ נמשך אל a ומסומן "בסיס" בעוד חץ אחר נמשך אל n הכתב העליון ומסומן "אקספוננט". להלן המשוואה שכתב עליון n שווה פעמים פעמים אליפסה כפול a, מה שמרמז על מספר בלתי מוגדר של "a" s שמוכפל. סוגר מצויר מתחת ל- "a" s מוכפל ומתויג "n גורמים".
איור 1.3.4

הביטוי an נקרא a nth לכוח.

בעוד אנו קוראים an nth כ"כוח "a, אנו קוראים בדרך כלל:

  • a2"בריבוע"
  • a3"קוביות"

נראה מאוחר יותר מדוע a2 ויש a3 לנו שמות מיוחדים.

הטבלה 1.3.6 מראה כיצד אנו קוראים כמה ביטויים עם מעריכים.

טבלה 1.3.6
ביטוי במילים
72 7לכוח השני או 7 בריבוע
53 5לכוח השלישי או 5 לקוביות
94 9לכוח הרביעי
125 12אל הכוח החמישי
תרגיל 1.3.7

פשט: 34

תשובה

34
\ [\ התחל {align*} &\ text {הרחב את הביטוי} & & 3\ cdot 3\ cdot 3\ cdot 3\\\ טקסט {הכפל משמאל לימין} & & 9\ cdot 3\ cdot 3\\ cdot 3\ cdot 3\\ טקסט {כפל}
& 81\ סיום {יישור *}\]

תרגיל 1.3.8

פשט:

  1. 53
  2. 17
תשובה
  1. 125
  2. 1
תרגיל 1.3.9
  1. 72
  2. 05
תשובה
  1. 49
  2. 0

פשט ביטויים באמצעות סדר הפעולות

לפשט ביטוי פירושו לעשות את כל המתמטיקה האפשרית. לדוגמה, כדי לפשט 42+1 היינו קודם כל להכפיל 42 כדי לקבל 8 ולאחר מכן להוסיף את 1 כדי לקבל9. הרגל טוב להתפתח הוא לעבוד לאורך הדף, לכתוב כל שלב בתהליך מתחת לשלב הקודם. הדוגמה שתוארה זה עתה תיראה כך:

42+1

8+1

9

על ידי אי שימוש בסימן שווה כשאתה מפשט ביטוי, אתה יכול להימנע מבלבול ביטויים עם משוואות.

פשט ביטוי

כדי לפשט ביטוי, בצע את כל הפעולות בביטוי.

הצגנו את רוב הסמלים והסימונים המשמשים באלגברה, אך כעת עלינו להבהיר את סדר הפעולות. אחרת, לביטויים עשויות להיות משמעויות שונות, והן עלולות לגרום לערכים שונים. לדוגמה, שקול את הביטוי:

4+37

אם אתה מפשט את הביטוי הזה, מה אתה מקבל?

חלק מהתלמידים אומרים49,

4+37

מאז 4+3 נותן7.

77

77והוא 49 49

אחרים אומרים25,

4+37

מאז 37 הוא21.

4+21

21+4ועושה25.

25

תארו לעצמכם את הבלבול במערכת הבנקאית שלנו אם לכל בעיה היו כמה תשובות נכונות שונות!

אותו ביטוי צריך לתת את אותה תוצאה. אז מתמטיקאים קבעו בשלב מוקדם כמה הנחיות הנקראות סדר הפעולות.

בצע את סדר הפעולות.
  1. סוגריים וסמלי קיבוץ אחרים
    • פשט את כל הביטויים בתוך הסוגריים או סמלי קיבוץ אחרים, ועבד תחילה על הסוגריים הפנימיים ביותר.
  2. מעריכים
    • פשט את כל הביטויים בעזרת אקספוננטים.
  3. כפל וחילוק
    • בצע את כל הכפל והחלוקה לפי הסדר משמאל לימין. לפעולות אלה יש עדיפות שווה.
  4. חיבור וחיסור
    • בצע את כל ההוספה והחיסור לפי הסדר משמאל לימין. לפעולות אלה יש עדיפות שווה.
הערה

ביצוע פעילות המתמטיקה המניפולטיבית "משחק 24" יעניק לך תרגול לפי סדר הפעולות.

התלמידים שואלים לעתים קרובות, "איך אזכור את ההזמנה?" הנה דרך לעזור לך לזכור: קח את האות הראשונה של כל מילת מפתח והחלף את הביטוי המטופש: "אנא סלח לדודתי היקרה סאלי."

\ [\ התחל {יישור*} &\ טקסט {P}\ טקסט {ארנתזות} & &\ טקסט {P}\ טקסט {חכירה}\\ [5pt]
&\ טקסט {E}\ טקסט {xponents} & &\ טקסט {E}\ טקסט {xcuse}\\ [5pt]
&\ textbf {M}\ שטח\ טקסט {D}\ טקסט {ivision} & &\ טקסט {M}\ טקסט {y}\ טקסט\ טקסט {D}\ טקסט {D}\ טקסט {אוזן}\ [5pt] &\ טקסט {A}\ טקסט {ddition}\ טקסט {S}\ טקסט {משיכה}
& &\ טקסט רווח\ טקסט {S}\ טקסט {ברית}\ סוף {יישור*}\]

זה טוב ש- "My Dear" הולך ביחד, מכיוון שזה מזכיר לנו כי ל- m ultiplication ו - d ivision יש עדיפות שווה. אנחנו לא תמיד עושים כפל לפני חלוקה או תמיד עושים חלוקה לפני הכפל. אנחנו עושים אותם לפי הסדר משמאל לימין.

באופן דומה, "Aunt Sally" הולך יחד וכך מזכיר לנו שלדיטציה ו- s ubtraction יש גם עדיפות שווה ואנחנו עושים אותם לפי סדר משמאל לימין.

בואו ננסה דוגמה.

תרגיל 1.3.10

פשט:

  1. 4+37
  2. (4+3)7
תשובה
1.
  4+37
האם יש p arentheses? לא.  
האם יש אקספונטים? לא.  
האם יש m אולטיקציה או d ivision? כן.  
הכפל תחילה. 4+37
להוסיף. 4+21
  25

2.

  (4+3)7
האם יש p arentheses? כן. (4+3)7
פשט בתוך הסוגריים. (7)7
האם יש אקספונטים? לא.  
האם יש m אולטיקציה או d ivision? כן.  
להכפיל. 49
תרגיל 1.3.11

פשט:

  1. 1252
  2. (125)2
תשובה
  1. 2
  2. 14
תרגיל 1.3.12

פשט:

  1. 8+39
  2. (8+3)9
תשובה
  1. 35
  2. 99
תרגיל 1.3.13

פשט: 18÷6+4(52)

תשובה
סוגריים? כן, תחסר קודם.

18÷6+4(52)
18÷6+4(3)

אקספונסנטים? לא.  
כפל או חלוקה? כן. 18÷6+4(3)
חלקו תחילה מכיוון שאנו מכפילים ומחלקים משמאל לימין. 3+4(3)
כל כפל או חלוקה אחרים? כן.  
להכפיל. 3+12
כל כפל או חלוקה אחרים? לא.  
כל תוספת או חיסור? כן. 15
תרגיל 1.3.14

פשט: 30÷5+10(32)

תשובה

16

תרגיל 1.3.15

פשט: 70÷10+4(62)

תשובה

23

כאשר ישנם סמלי קיבוץ מרובים, אנו מפשטים תחילה את הסוגריים הפנימיים ביותר ועובדים כלפי חוץ.

תרגיל 1.3.16

פשט:5+23+3[63(42)].

תשובה
  5+23+3[63(42)]
האם יש סוגריים (או סמל קיבוץ אחר)? כן.  
התמקדו בסוגריים שנמצאים בתוך הסוגריים. 5+23+3[63(42)]
לחסר. 5+23+3[63(2)]
המשך בתוך הסוגריים והכפיל. 5+23+3[66]
המשך בתוך הסוגריים וחסר. 5+23+3[0]
הביטוי בתוך הסוגריים אינו דורש פישוט נוסף.  
האם יש אקספונסנטים? כן. 5+23+3[0]
פשט את המעריכים. 5+8+3[0]
האם יש כפל או חלוקה? כן.  
להכפיל. 5+8+0
האם יש חיבור או חיסור? כן.  
להוסיף. 13+0
להוסיף. 13
תרגיל 1.3.17

פשט:9+53[4(9+3)].

תשובה

86

תרגיל 1.3.18

פשט:722[4(5+1)].

תשובה

1

הערך ביטוי

בדוגמאות האחרונות פשטנו ביטויים לפי סדר הפעולות. כעת נעריך כמה ביטויים - שוב בעקבות סדר הפעולות. הערכת ביטוי פירושה למצוא את ערך הביטוי כאשר המשתנה מוחלף במספר נתון.

הערך ביטוי

הערכת ביטוי פירושה למצוא את ערך הביטוי כאשר המשתנה מוחלף במספר נתון.

כדי להעריך ביטוי, החלף את המספר הזה במשתנה בביטוי ואז פשט את הביטוי.

תרגיל 1.3.19

להעריך7x4, מתי

  1. x=5
  2. x=1
תשובה

1.

מתי x=5 7x4
  7(5)4
להכפיל. 354
לחסר. 31

2.

מתי x=1 7x4
  7(1)4
להכפיל. 74
לחסר. 3
תרגיל 1.3.20

להעריך8x3, מתי

  1. x=2
  2. x=1
תשובה
  1. 13
  2. 5
תרגיל 1.3.21

להעריך4y4, מתי

  1. y=3
  2. y=5
תשובה
  1. 8
  2. 16
תרגיל 1.3.22

להעריךx=4, מתי

  1. x2
  2. 3x
תשובה

1.

  x2
החלף x עם4. (4)2
השתמש בהגדרה של מעריך. 44
לפשט. 16

2.

  3x
החלף x עם4. \(3^
ParseError: invalid DekiScript (click for details)
Callstack:
    at (עברית/אלגברה_יסודית_1e_(OpenStax)/01:_יסודות/1.03:_השתמש_בשפת_האלגברה), /content/body/div[4]/div[5]/div/dl/dd/table[2]/tbody/tr[2]/td[2]/span/span, line 1, column 1
\)
השתמש בהגדרה של מעריך. 3333
לפשט. 81
תרגיל 1.3.23

להעריךx=3, מתי

  1. x2
  2. 4x
תשובה
  1. 9
  2. 64
תרגיל 1.3.24

להעריךx=6, מתי

  1. x3
  2. 2x
תשובה
  1. 216
  2. 64
תרגיל 1.3.25

להעריך 2x2+3x+8 מתיx=4.

תשובה
  2x2+3x+8
תחליףx=4. 2x2+3x+8
2(4)2+3(4)+8
בצע את סדר הפעולות. 2(16)+3(4)+8
  32+12+8
  52
תרגיל 1.3.26

להעריך 3x2+4x+1 מתיx=3.

תשובה

40

תרגיל 1.3.27

להעריך 6x24x7 מתיx=2.

תשובה

9

זהה ושלב מונחים דומים

ביטויים אלגבריים מורכבים ממונחים. מונח הוא קבוע, או תוצר של משתנה קבוע ואחד או יותר.

מונח

מונח הוא קבוע, או תוצר של משתנה קבוע ואחד או יותר.

דוגמאות למונחים הן7,y,5x2,9a, וb5.

הקבוע שמכפיל את המשתנה נקרא מקדם.

מקדם

המקדם של מונח הוא הקבוע שמכפיל את המשתנה במונח.

חשבו על המקדם כמספר מול המשתנה. המקדם של המונח 3x הוא3. כאשר אנו כותביםx, המקדם הוא1, שכןx=1x.

תרגיל 1.3.28

זהה את המקדם של כל מונח:

  1. 14y
  2. 15x2
  3. a
תשובה
  1. המקדם של 14y הוא 14
  2. המקדם של 15x2 הוא 15
  3. המקדם של a הוא 1 מאזa=1a.
תרגיל 1.3.29

זהה את המקדם של כל מונח:

  1. 17x
  2. 41b2
  3. z
תשובה
  1. 14
  2. 41
  3. 1
תרגיל 1.3.30

זהה את המקדם של כל מונח:

  1. 9p
  2. 13a2
  3. y3
תשובה
  1. 9
  2. 13
  3. 1

מונחים מסוימים חולקים תכונות משותפות. תסתכל על 6 המונחים הבאים. לאילו מהם יש תכונות משותפות?

5x7n243x9n2

ה 7 ו- שניהם 4 מונחים קבועים.

ה 5x ו שניהם 3x מונחים עםx.

ה n2 ו שניהם 9n2 מונחים עםn2.

כאשר שני מונחים הם קבועים או שיש להם אותו משתנה ומעריך, אנו אומרים שהם כמו מונחים.

  • 74והם כמו תנאים.
  • 5x3xוהם כמו תנאים.
  • x29x2והם כמו תנאים.
כמו תנאים

מונחים שהם קבועים או שיש להם אותם משתנים המועלים לאותם כוחות נקראים כמו מונחים.

תרגיל 1.3.31

זהה את המונחים הדומים:y3,7x2,14,23,4y3,9x,5x2.

תשובה

y34y3והם כמו מונחים מכיוון שלשניהם ישy3; המשתנה והתאמה המעריך.

7x25x2והם כמו מונחים מכיוון שלשניהם ישx2; המשתנה והתאמה המעריך.

1423והם כמו מונחים כי שניהם קבועים.

אין מונח אחר כמו9x.

תרגיל 1.3.32

זהה את המונחים הדומים:9,2x3,y2,8x3,15,9y,11y2.

תשובה

9ו15, y2 ו11y2, 2x3 ו 8x3

תרגיל 1.3.33

זהה את המונחים הדומים:4x3,8x2,19,3x3,24,6x3.

תשובה

19ו24, 8x2 ו3x2, 4x3 ו 6x3

הוספה או חיסור של מונחים יוצרת ביטוי. בביטוי2x2+3x+8, מתוך דוגמה, שלושת המונחים הם2x2,3x, ו8.
תרגיל 1.3.34

זהה את המונחים בכל ביטוי.

  1. 9x2+7x+12
  2. 8x+3y
תשובה
  1. התנאים של 9x2+7x+12 הם9x2,7x, ו12.
  2. התנאים של 8x+3y הם 8x ו3y.
תרגיל 1.3.35

זהה את המונחים בביטוי4x2+5x+17.

תשובה

4x2,5x,17

תרגיל 1.3.36

זהה את המונחים בביטוי5x+2y.

תשובה

5x,2y

אם יש מונחים דומים בביטוי, אתה יכול לפשט את הביטוי על ידי שילוב של מונחים דומים. מה לדעתך 4x+7x+x יפשט? אם היית חושב12x, היית צודק!

4x+7x+xx+x+x+x+x+x+x+x+x+x+x+x12x

הוסף את המקדמים ושמור על אותו משתנה. לא משנה מה זה x - אם יש לך 4 ממשהו ותוסיף עוד 7 מאותו הדבר ואז הוסף עוד 1, התוצאה היא 12 מהם. לדוגמא, 4 תפוזים פלוס 7 תפוזים פלוס תפוז אחד הם 12 תפוזים. נדון בתכונות המתמטיות העומדות מאחורי זה בהמשך.

פשט: 4x+7x+x

הוסף את המקדמים. 12x

תרגיל 1.3.37: How To Combine Like Terms

פשט: 2x2+3x+7+x2+4x+5

תשובה

שלוש שורות של הוראות מופיעות בעמודה בצד שמאל של התמונה ואילו ארבעה ביטויים אלגבריים מופיעים מימין. שורת ההוראה הראשונה משמאל אומרת: "שלב 1. זהה מונחים כמו." מעבר לשלב 1 בעמודה הימנית נמצא הביטוי האלגברי: 2x בריבוע פלוס 3x פלוס 7 פלוס x בריבוע פלוס 4x פלוס 5. שורה אחת למטה מימין, אותו ביטוי אלגברי חוזר על עצמו, אלא שכל אחד מהמונחים מופיע באחד משלושה צבעים כדי להמחיש שמדובר במונחים דומים: 2x בריבוע ו- x בריבוע מופיעים כאדומים, וממחישים שאלו מונחים דומים; 3x ו- 4x מופיעים כחולים, וממחישים כי אלה הם גם מונחים כמו מונחים; 7 ו -5 מופיעים כירוקים, וממחישים כי גם אלה מונחים דומים.
שורת ההוראה השנייה משמאל אומרת: "שלב 2. סדר מחדש את הביטוי כך שהמונחים הדומים יהיו ביחד. מעבר לשלב 2 בעמודה הימנית נמצא הביטוי האלגברי המקורי עם מונחים מסודרים מחדש כך שמונחים דומים מופיעים זה לצד זה: 2x בריבוע פלוס x2, שניהם כתובים באדום, בתוספת 3x פלוס 4x, שניהם כתובים n כחול, בתוספת 7 פלוס 5, שניהם כתובים בירוק.
השורה השלישית של ההוראה משמאל אומרת: "שלב 3. לשלב מונחים כמו." מעבר לשלב 3 בעמודה הימנית נמצא הביטוי האלגברי עם מונחים דומים בשילוב: 3x בריבוע באדום, בתוספת 7x בכחול, בתוספת 12 בירוק.

תרגיל 1.3.38

פשט:3x2+7x+9+7x2+9x+8.

תשובה

10x2+16x+17

תרגיל 1.3.39

פשט:4y2+5y+2+8y2+4y+5.

תשובה

12y2+9y+7

שלב מונחים דומים.
  1. זהה מונחים דומים.
  2. סדר מחדש את הביטוי כך שמונחים יהיו ביחד.
  3. הוסף או הפחת את המקדמים ושמור על אותו משתנה עבור כל קבוצה של מונחים דומים.

תרגם ביטוי באנגלית לביטוי אלגברי

בחלק האחרון פירטנו סמלי פעולה רבים המשמשים באלגברה, ואז תרגמנו ביטויים ומשוואות לביטויים ומשפטים באנגלית. עכשיו נהפוך את התהליך. נתרגם ביטויים באנגלית לביטויים אלגבריים. הסמלים והמשתנים עליהם דיברנו יעזרו לנו לעשות זאת. הטבלה 1.3.7 מסכמת אותם.

מבצע ביטוי הבעה
תוספת aבתוספת b
הסכום a b
a והגדיל ביותר a
מהסך הכולל a b
b והוסיף ל b
b a
a+b
חיסור aמינוס b
ההפרש של a b
a וירד b
b בפחות a
b מהפחתת a
a−b
כפל aפעמים b
המוצר של a b
ופעמיים a
a\cdot b, ab, a(b), (a)(b)
2a
חטיבה aמחולק b
על ידי המנה של a והיחס b
של a b
b ומחולק a
a\div b, a/b, \frac{a}{b}, b \enclose{longdiv}{a}
טבלה \PageIndex{7}

התבונן מקרוב בביטויים אלה באמצעות ארבע הפעולות:

מוצגים ארבעה ביטויים. הראשון קורא "סכום של a ו- b", שם המילים "של" ו- "ו-" נכתבות באדום. השני קורא "ההבדל של a ו- b", שם המילים "של" ו- "ו-" נכתבות באדום. השלישי קורא "תוצר של a ו- b", שם המילים "של" ו- "ו-" נכתבות באדום. הרביעי קורא "המנה של a ו- b", שם המילים "של" ו- "ו-" נכתבות באדום.
איור \PageIndex{5}

כל ביטוי אומר לנו לפעול על שני מספרים. חפש את המילים של ולמצוא את המספרים.

תרגיל \PageIndex{40}

תרגם כל ביטוי באנגלית לביטוי אלגברי:

  1. ההבדל של 17x ו 5
  2. המנה של 10x^{2} ו. 7
תשובה
  1. מילת המפתח היא הבדל, שאומר לנו שהפעולה היא חיסור. חפש את המילים של ו ו- t o מצא את המספרים שיש לחסר.
    הביטוי "ההבדל של 17x ו 5", שבו המילים "של" ו "ו" כתובים באדום, כתוב מעל הביטוי "17 x מינוס 5". ביטוי אחרון שנכתב להלן קורא "17 x, סימן מינוס, 5".
  2. מילת המפתח היא "מנה", שאומרת לנו שהמבצע הוא חלוקה.

הביטוי "המנה של 10x בריבוע ו -7", שבו המילים "של" ו- "ו-" נכתבות באדום, כתוב מעל הביטוי "חלק 10x בריבוע על ידי 7". הביטוי שנכתב להלן קורא "10x בריבוע, סימן חלוקה, v7".

זה יכול להיות גם כתוב 10x^{2}/7 או\dfrac{10x^{2}}{7}.

תרגיל \PageIndex{41}

תרגם כל ביטוי באנגלית לביטוי אלגברי:

  1. ההבדל של 14x^{2} ו 13
  2. המנה של 12x ו. 2
תשובה
  1. 14x^{2} - 13
  2. 12x \div 2
תרגיל \PageIndex{42}

תרגם כל ביטוי באנגלית לביטוי אלגברי:

  1. סכום 17y^{2} ו 19
  2. המוצר של 7 וy.
תשובה
  1. 17y^{2} + 19
  2. 7y

בן כמה תהיה בעוד שמונה שנים? איזה גיל הוא שמונה שנים יותר מגילך עכשיו? האם הוספת 8 לגילך הנוכחי? שמונה "יותר מ" פירושו 8 שנוספו לגילך הנוכחי. בן כמה היית לפני שבע שנים? זה 7 שנים פחות מגילך עכשיו. אתה מחסיר 7 מגילך הנוכחי. שבעה "פחות מ" פירושו 7 מופחת מגילך הנוכחי.

תרגיל \PageIndex{43}

תרגם את הביטוי האנגלי לביטוי אלגברי:

  1. שבע עשרה יותר מ y
  2. תשע פחות מ9x^{2}.
תשובה
  1. מילות המפתח הן יותר מ. הם אומרים לנו שהמבצע הוא תוספת. יותר מאשר פירושו "להוסיף ל".

    \begin{array} { c } { \text { Seventeen more than } y } \\ { \text { Seventeen added to } y } \\ { y + 17 } \end{array}

  2. מילות המפתח הן פחות מ. הם אומרים לנו לחסר. פחות מ פירושו "מופחת מ."

    \begin{array} { c } { \text { Nine less than } 9 x ^ { 2 } } \\ { \text { Nine subtracted from } 9 x ^ { 2 } } \\ { 9 x ^ { 2 } - 9 } \end{array}

תרגיל \PageIndex{44}

תרגם את הביטוי האנגלי לביטוי אלגברי:

  1. 11 יותר מ- x
  2. ארבע עשרה פחות11a.
תשובה
  1. x+11
  2. 11a−14
תרגיל \PageIndex{45}

תרגם את הביטוי האנגלי לביטוי אלגברי:

  1. 13יותר מ z
  2. 18פחות מ8x.
תשובה

1. z+13
2. 8x−18

תרגיל \PageIndex{46}

תרגם את הביטוי האנגלי לביטוי אלגברי:

  1. חמש פעמים את הסכום של m ו n
  2. סכום של חמש פעמים m וn.
תשובה

ישנן שתי מילות פעולה - הזמנים אומרים לנו להכפיל והסכום אומר לנו להוסיף.
1. מכיוון שאנו מכפילים 5 כפול הסכום שאנו זקוקים לסוגריים סביב סכום m וn,(m+n). זה מכריח אותנו לקבוע תחילה את הסכום. (זכור את סדר הפעולות.)

\begin{array} { c } { \text { five times the sum of } m \text { and } n } \\ { 5 ( m + n ) } \end{array}

2. כדי לקחת סכום, אנו מחפשים את המילים "של" ו- "ו-" כדי לראות מה מתווסף. כאן אנו לוקחים את הסכום של חמש פעמים m ו\ (n\.)

\begin{array} { c } { \text { the sum of five times } m \text { and } n } \\ { 5 m + n } \end{array}

תרגיל \PageIndex{47}

תרגם את הביטוי האנגלי לביטוי אלגברי:

  1. ארבע פעמים את הסכום של p ו q
  2. סכום של ארבע פעמים p וq.
תשובה
  1. 4(p+q)
  2. 4p+q
תרגיל \PageIndex{48}

תרגם את הביטוי האנגלי לביטוי אלגברי:

  1. ההבדל של פעמיים x ו8,
  2. פי שניים מההפרש של x ו-8.
תשובה
  1. 2x−8
  2. 2(x−8)

בהמשך קורס זה, ניישם את כישורינו באלגברה לפתרון יישומים. השלב הראשון יהיה לתרגם ביטוי באנגלית לביטוי אלגברי. נראה כיצד לעשות זאת בשתי הדוגמאות הבאות.

תרגיל \PageIndex{49}

אורכו של מלבן 6 קטן מהרוחב. בואו w לייצג את רוחב המלבן. כתוב ביטוי לאורך המלבן.

תשובה

\begin{array} { l l } { \text { Write a phrase about the length of the rectangle. } } &{ 6 \text { less than the width } } \\ { \text { Substitute } w \text { for "the width." } } &{\text{6 less then w}} \\ { \text { Rewrite "less than" as "subtracted from." } } &{\text{6 subtracted from w}} \\ { \text { Translate the phrase into algebra. } } &{w - 6} \end{array}

תרגיל \PageIndex{50}

אורכו של מלבן 7 קטן מהרוחב. בואו w לייצג את רוחב המלבן. כתוב ביטוי לאורך המלבן.

תשובה

w - 7

תרגיל \PageIndex{51}

רוחב המלבן 6 קטן מהאורך. בואו l לייצג את אורך המלבן. כתוב ביטוי לרוחב המלבן.

תשובה

l - 6

תרגיל \PageIndex{52}

לג'ון יש מטבעות ורבעים בארנקה. מספר הפרוטות הוא שלוש פחות מארבע פעמים ממספר הרבעונים. בואו q לייצג את מספר הרבעונים. כתוב ביטוי למספר הפרוטות.

תשובה

\begin{array} { ll } { \text { Write the phrase about the number of dimes. } } &{\text{three less than four times the number of quarters}} \\ { \text { Substitute } q \text { for the number of quarters. } } &{\text{3 less than 4 times q}} \\ { \text { Translate "4 times } q \text { ." } } &{\text{3 less than 4q}} \\ { \text { Translate the phrase into algebra. } } &{\text{4q - 3}} \end{array}

תרגיל \PageIndex{53}

לג'פרי יש מטבעות ורבעים בכיס. מספר הפרוטות הוא שמונה פחות מארבע פעמים ממספר הרבעונים. בואו q לייצג את מספר הרבעונים. כתוב ביטוי למספר הפרוטות.

תשובה

4q - 8

תרגיל \PageIndex{54}

ללורן יש מטבעות וניקלים בארנק. מספר הפרוטות הוא פי שלושה יותר משבעה ממספר הניקלים. בואו n לייצג את מספר הניקלים. כתוב ביטוי למספר הפרוטות.

תשובה

7n + 3

מושגי מפתח

  • סימון התוצאה היא...
    \begin{array} { l l } {\bullet \space a + b } &{ \text { the sum of } a \text { and } b } \\ { \bullet \space a - b } &{ \text { the difference of } a \text { and } b } \\ {\bullet\space a \cdot b , a b , ( a ) ( b ) ( a ) b , a ( b ) } &{ \text { the product of } a \text { and } b } \\ {\bullet\space a \div b , a / b , \frac { a } { b } , b ) \overline{a} } &{ \text { the quotient of } a \text { and } b } \end{array}
  • אי שוויון
    \begin{array} { l l } { \bullet \space a < b \text { is read "a is less than } b ^ { \prime \prime } } &{a \text { is to the left of } b \text { on the number line } } \\ { \bullet \space a > b \text { is read "a is greater than } b ^ { \prime \prime } } & { a \text { is to the right of } b \text { on the number line } } \end{array}
  • אי שוויון סמלים מילים
    \begin{array} {ll} { \bullet a \neq b } &{ a \text { is not equal to } b } \\ { \bullet a < b } &{ a \text { is less than } b } \\ { \bullet a \leq b } &{ a \text { is less than or equal to } b } \\ { \bullet a > b } & { a \text { is greater than } b } \\ { \bullet a \geq b } & { a \text { is greater than or equal to } b } \end{array}
  • קיבוץ סמלים
    • סוגריים ()
    • סוגריים []
    • גשר בשיניים {}
  • סימון אקספוננציאלי
    • a^{n}פירושו תוצר של n גורמים שלa. הביטוי a^{n} נקרא a n^{th} לכוח.
  • סדר הפעולות: בעת פישוט ביטויים מתמטיים בצע את הפעולות בסדר הבא:
    1. סוגריים וסמלי קיבוץ אחרים: פשט את כל הביטויים בתוך הסוגריים או סמלי קיבוץ אחרים, ועבד תחילה על הסוגריים הפנימיים ביותר.
    2. אקספונסנטים: פשט את כל הביטויים בעזרת אקספונסנטים.
    3. כפל וחילוק: בצע את כל הכפל והחלוקה לפי סדר משמאל לימין. לפעולות אלה יש עדיפות שווה.
    4. חיבור וחיסור: בצע את כל החיבור והחיסור לפי הסדר משמאל לימין. לפעולות אלה יש עדיפות שווה.
  • שילוב מונחים כמו
    1. זהה מונחים דומים.
    2. סדר מחדש את הביטוי כך שמונחים יהיו ביחד.
    3. הוסף או הפחת את המקדמים ושמור על אותו משתנה עבור כל קבוצה של מונחים דומים.

רשימת מילים

מקדם
המקדם של מונח הוא הקבוע שמכפיל את המשתנה במונח.
קבוע
קבוע הוא מספר שערכו תמיד נשאר זהה.
סמל שוויון
הסמל "=" נקרא סימן שווה. אנו קוראים a=b כמו "aשווה לb."
משוואה
משוואה היא שני ביטויים המחוברים בסימן שווה.
להעריך ביטוי
הערכת ביטוי פירושה למצוא את ערך הביטוי כאשר המשתנה מוחלף במספר נתון.
ביטוי
ביטוי הוא מספר, משתנה או שילוב של מספרים ומשתנים המשתמשים בסמלי פעולה.
כמו מונחים
מונחים שהם קבועים או שיש להם אותם משתנים המועלים לאותם כוחות נקראים כמו מונחים.
לפשט ביטוי
כדי לפשט ביטוי, בצע את כל הפעולות בביטוי.
מונח
מונח הוא קבוע או תוצר של משתנה קבוע ואחד או יותר.
משתנה
משתנה הוא אות המייצגת מספר שערכו עשוי להשתנות.