Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Skip to main content
Library homepage
 
Global

Search

Searching in
About 5 results
  • https://query.libretexts.org/%E7%AE%80%E4%BD%93%E4%B8%AD%E6%96%87/%E5%A4%A7%E5%AD%A6%E7%89%A9%E7%90%86%E5%AD%A6_I-%E5%8A%9B%E5%AD%A6%E3%80%81%E5%A3%B0%E9%9F%B3%E3%80%81%E6%8C%AF%E8%8D%A1%E5%92%8C%E6%B3%A2%E6%B5%AA_(OpenStax)/10%3A_10%EF%BC%9A%E5%9B%BA%E5%AE%9A%E8%BD%B4%E6%97%8B%E8%BD%AC%E7%AE%80%E4%BB%8B/10.S%3A_10.S%EF%BC%9A%E5%9B%BA%E5%AE%9A%E8%BD%B4%E6%97%8B%E8%BD%AC%E7%AE%80%E4%BB%8B%EF%BC%88%E6%91%98%E8%A6%81%EF%BC%89
    旋转物体绕固定轴的角速度定义为ω (rad/s),即以弧度每秒为单位的物体的旋转速率。 旋转物体的瞬时角速度ω=lim是相对于角位置时间的导数\theta,通过在平均角速度中取极限\(\Delt...旋转物体绕固定轴的角速度定义为\omega (rad/s),即以弧度每秒为单位的物体的旋转速率。 旋转物体的瞬时角速度\omega = \lim_{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t} = \frac{d \theta}{dt}是相对于角位置时间的导数\theta,通过在平均角速度中取极限\Delta t → 0 得出\bar{\omega} = \frac{\Delta \theta}{\Delta t}。 角速度通过关系 v t = r 将 v t 与旋转体上某个点的切向速度联系起来\omega,其中 r 是该点的半径,v t 是给定点的切向速度。
  • https://query.libretexts.org/%D8%A7%D9%84%D9%84%D8%BA%D8%A9_%D8%A7%D9%84%D8%B9%D8%B1%D8%A8%D9%8A%D8%A9/-_____(OpenStax)/10%3A_%D9%85%D9%82%D8%AF%D9%85%D8%A9_%D8%AF%D9%88%D8%B1%D8%A7%D9%86_%D8%A7%D9%84%D9%85%D8%AD%D9%88%D8%B1_%D8%A7%D9%84%D8%AB%D8%A7%D8%A8%D8%AA/10.S%3A_%D9%85%D9%82%D8%AF%D9%85%D8%A9_%D8%AF%D9%88%D8%B1%D8%A7%D9%86_%D8%A7%D9%84%D9%85%D8%AD%D9%88%D8%B1_%D8%A7%D9%84%D8%AB%D8%A7%D8%A8%D8%AA_(%D9%85%D9%84%D8%AE%D8%B5)
    السرعة الزاوية اللحظية للجسم الدوار\omega = \lim_{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t} = \frac{d \theta}{dt} هي المشتقة فيما يتعلق بوقت الموضع الزاوي\theta، والتي يتم العثور ...السرعة الزاوية اللحظية للجسم الدوار\omega = \lim_{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t} = \frac{d \theta}{dt} هي المشتقة فيما يتعلق بوقت الموضع الزاوي\theta، والتي يتم العثور عليها بأخذ الحد\Delta t → 0 في متوسط السرعة الزاوية\bar{\omega} = \frac{\Delta \theta}{\Delta t}.
  • https://query.libretexts.org/Idioma_Portugues/Fisica_Universitaria_I_-_Mecanica_Som_Oscilacoes_e_Ondas_(OpenStax)/10%3A_Introducao_a_rotacao_de_eixo_fixo/10.S%3A_Introdu%C3%A7%C3%A3o_%C3%A0_rota%C3%A7%C3%A3o_de_eixo_fixo_(resumo)
    A magnitude de um torque em torno de um eixo fixo é calculada encontrando o braço da alavanca até o ponto em que a força é aplicada e usando a relação|\vec{\tau}| = r \perp F, onde r \perp...A magnitude de um torque em torno de um eixo fixo é calculada encontrando o braço da alavanca até o ponto em que a força é aplicada e usando a relação|\vec{\tau}| = r \perp F, onde r \perp é a distância perpendicular do eixo até a linha na qual o vetor de força se encontra.
  • https://query.libretexts.org/Kiswahili/Chuo_Kikuu_Fizikia_I_-_Mitambo%2C_Sauti%2C_oscillations%2C_na_Waves_(OpenStax)/10%3A_Kuanzishwa_kwa_mzunguko_wa_Axis/10.S%3A_Fast-Axis_mzunguko_Introduction_(muhtasari)
    Kasi ya angular ya papo hapo ya mwili inayozunguka\omega = \lim_{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t} = \frac{d \theta}{dt} ni derivative kwa heshima ya muda wa nafasi ya angular...Kasi ya angular ya papo hapo ya mwili inayozunguka\omega = \lim_{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t} = \frac{d \theta}{dt} ni derivative kwa heshima ya muda wa nafasi ya angular\theta, iliyopatikana kwa kuchukua kikomo\Delta t → 0 kwa kasi ya angular wastani\bar{\omega} = \frac{\Delta \theta}{\Delta t}. Kuongeza kasi ya jumla ya mstari ni jumla ya vector ya vector ya kuongeza kasi ya centripetal na vector ya kuongeza kasi ya tangential.
  • https://query.libretexts.org/Francais/Physique_universitaire_I_-_M%C3%A9canique%2C_son%2C_oscillations_et_ondes_(OpenStax)/10%3A_Introduction_%C3%A0_la_rotation_%C3%A0_axe_fixe/10.S%3A_Introduction_%C3%A0_la_rotation_%C3%A0_axe_fixe_(r%C3%A9sum%C3%A9)
    La vitesse angulaire instantanée d'un corps en rotation\omega = \lim_{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t} = \frac{d \theta}{dt} est la dérivée par rapport au temps de la positio...La vitesse angulaire instantanée d'un corps en rotation\omega = \lim_{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t} = \frac{d \theta}{dt} est la dérivée par rapport au temps de la position angulaire\theta, obtenue en prenant la limite\Delta t → 0 de la vitesse angulaire moyenne\bar{\omega} = \frac{\Delta \theta}{\Delta t}.