Skip to main content
Library homepage
 
Global

Search

Searching in
About 5 results
  • https://query.libretexts.org/Francais/Alg%C3%A8bre_interm%C3%A9diaire_(OpenStax)/05%3A_Fonctions_polynomiales_et_polynomiales/5.03%3A_Propri%C3%A9t%C3%A9s_des_exposants_et_notation_scientifique
    \(\begin{array} {ll} {} &{\left(\dfrac{4p^{−3}}{q^2}\right)^2} \\ {\text{Use Quotient to a Power Property, }\left(\dfrac{a}{b}\right)^m=\dfrac{a^m}{b^m}.} &{\dfrac{(4p^{−3})^2}{(q^2)^2}} \\ {\text{Use...\(\begin{array} {ll} {} &{\left(\dfrac{4p^{−3}}{q^2}\right)^2} \\ {\text{Use Quotient to a Power Property, }\left(\dfrac{a}{b}\right)^m=\dfrac{a^m}{b^m}.} &{\dfrac{(4p^{−3})^2}{(q^2)^2}} \\ {\text{Use the Product to a Power Property, }(ab)^m=a^mb^m.} &{\dfrac{4^2(p^{−3})^2}{(q^2)^2}} \\ {\text{Simplify using the Power Property, }(a^m)^n=a^{m·n}.} &{\dfrac{16p^{−6}}{q^4}} \\ {\text{Use the definition of negative exponent.}} &{\dfrac{16}{q^4}·\dfrac{1}{p^6}} \\ {\text{Simplify.}} &{\dfrac{16}{p^6…
  • https://query.libretexts.org/%D8%A7%D9%84%D9%84%D8%BA%D8%A9_%D8%A7%D9%84%D8%B9%D8%B1%D8%A8%D9%8A%D8%A9/%D8%A7%D9%84%D8%AC%D8%A8%D8%B1_%D8%A7%D9%84%D9%85%D8%AA%D9%88%D8%B3%D8%B7_(OpenStax)/05%3A_%D8%AF%D9%88%D8%A7%D9%84_%D9%83%D8%AB%D9%8A%D8%B1%D8%A9_%D8%A7%D9%84%D8%AD%D8%AF%D9%88%D8%AF_%D9%88%D8%AF%D9%88%D8%A7%D9%84_%D9%83%D8%AB%D9%8A%D8%B1%D8%A9_%D8%A7%D9%84%D8%AD%D8%AF%D9%88%D8%AF/5.03%3A_%D8%AE%D8%B5%D8%A7%D8%A6%D8%B5_%D8%A7%D9%84%D8%A3%D8%B3%D8%B3_%D9%88%D8%A7%D9%84%D8%B1%D9%85%D9%88%D8%B2_%D8%A7%D9%84%D8%B9%D9%84%D9%85%D9%8A%D8%A9
    \(\begin{array} {ll} {} &{\left(\dfrac{4p^{−3}}{q^2}\right)^2} \\ {\text{Use Quotient to a Power Property, }\left(\dfrac{a}{b}\right)^m=\dfrac{a^m}{b^m}.} &{\dfrac{(4p^{−3})^2}{(q^2)^2}} \\ {\text{Use...\(\begin{array} {ll} {} &{\left(\dfrac{4p^{−3}}{q^2}\right)^2} \\ {\text{Use Quotient to a Power Property, }\left(\dfrac{a}{b}\right)^m=\dfrac{a^m}{b^m}.} &{\dfrac{(4p^{−3})^2}{(q^2)^2}} \\ {\text{Use the Product to a Power Property, }(ab)^m=a^mb^m.} &{\dfrac{4^2(p^{−3})^2}{(q^2)^2}} \\ {\text{Simplify using the Power Property, }(a^m)^n=a^{m·n}.} &{\dfrac{16p^{−6}}{q^4}} \\ {\text{Use the definition of negative exponent.}} &{\dfrac{16}{q^4}·\dfrac{1}{p^6}} \\ {\text{Simplify.}} &{\dfrac{16}{p^6…
  • https://query.libretexts.org/Kiswahili/Algebra_ya_kati_(OpenStax)/05%3A_Kazi_za_Polynomial_na_Polynomial/5.03%3A_Mali_ya_Watazamaji_na_Notation_ya_Sayansi
    \(\begin{array} {ll} {} &{\left(\dfrac{4p^{−3}}{q^2}\right)^2} \\ {\text{Use Quotient to a Power Property, }\left(\dfrac{a}{b}\right)^m=\dfrac{a^m}{b^m}.} &{\dfrac{(4p^{−3})^2}{(q^2)^2}} \\ {\text{Use...\(\begin{array} {ll} {} &{\left(\dfrac{4p^{−3}}{q^2}\right)^2} \\ {\text{Use Quotient to a Power Property, }\left(\dfrac{a}{b}\right)^m=\dfrac{a^m}{b^m}.} &{\dfrac{(4p^{−3})^2}{(q^2)^2}} \\ {\text{Use the Product to a Power Property, }(ab)^m=a^mb^m.} &{\dfrac{4^2(p^{−3})^2}{(q^2)^2}} \\ {\text{Simplify using the Power Property, }(a^m)^n=a^{m·n}.} &{\dfrac{16p^{−6}}{q^4}} \\ {\text{Use the definition of negative exponent.}} &{\dfrac{16}{q^4}·\dfrac{1}{p^6}} \\ {\text{Simplify.}} &{\dfrac{16}{p^6…
  • https://query.libretexts.org/Idioma_Portugues/Algebra_intermediaria_(OpenStax)/05%3A_Fun%C3%A7%C3%B5es_polinomiais_e_polinomiais/5.03%3A_Propriedades_dos_expoentes_e_nota%C3%A7%C3%A3o_cient%C3%ADfica
    De acordo com as Propriedades dos Expoentes Negativos,\(a\) para o negativo\(n\) é igual a\(1\) dividido por\(a\) para o\(n\) e\(1\) dividido por\(a\) para o negativo\(n\) é igual\(a\) a\(n\) a.
  • https://query.libretexts.org/%E7%AE%80%E4%BD%93%E4%B8%AD%E6%96%87/%E4%B8%AD%E7%BA%A7%E4%BB%A3%E6%95%B0_(OpenStax)/05%3A_%E5%A4%9A%E9%A1%B9%E5%BC%8F%E5%92%8C%E5%A4%9A%E9%A1%B9%E5%BC%8F%E5%87%BD%E6%95%B0/5.03%3A_%E6%8C%87%E6%95%B0%E5%92%8C%E7%A7%91%E5%AD%A6%E8%AE%B0%E6%95%B0%E6%B3%95%E7%9A%84%E5%B1%9E%E6%80%A7
    \(\begin{array} {ll} {} &{\left(\dfrac{4p^{−3}}{q^2}\right)^2} \\ {\text{Use Quotient to a Power Property, }\left(\dfrac{a}{b}\right)^m=\dfrac{a^m}{b^m}.} &{\dfrac{(4p^{−3})^2}{(q^2)^2}} \\ {\text{Use...\(\begin{array} {ll} {} &{\left(\dfrac{4p^{−3}}{q^2}\right)^2} \\ {\text{Use Quotient to a Power Property, }\left(\dfrac{a}{b}\right)^m=\dfrac{a^m}{b^m}.} &{\dfrac{(4p^{−3})^2}{(q^2)^2}} \\ {\text{Use the Product to a Power Property, }(ab)^m=a^mb^m.} &{\dfrac{4^2(p^{−3})^2}{(q^2)^2}} \\ {\text{Simplify using the Power Property, }(a^m)^n=a^{m·n}.} &{\dfrac{16p^{−6}}{q^4}} \\ {\text{Use the definition of negative exponent.}} &{\dfrac{16}{q^4}·\dfrac{1}{p^6}} \\ {\text{Simplify.}} &{\dfrac{16}{p^6…