Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 
Global

Search

Searching in
About 5 results
  • https://query.libretexts.org/%E7%AE%80%E4%BD%93%E4%B8%AD%E6%96%87/%E4%B8%AD%E7%BA%A7%E4%BB%A3%E6%95%B0_(OpenStax)/10%3A_%E6%8C%87%E6%95%B0%E5%92%8C%E5%AF%B9%E6%95%B0%E5%87%BD%E6%95%B0/10.0E%3A_%E7%AC%AC_10_%E7%AB%A0%E5%A4%8D%E4%B9%A0%E7%BB%83%E4%B9%A0
    2。 log58+2log5a+6log5b+log5c3log5d 4。 \(\begin{array}{l}{\frac{1}{3}\left(\log _{6} 7+2 \log _{6} x-1-3 \log _{6} y\right.} {-5 \l...2。 log58+2log5a+6log5b+log5c3log5d 4。 13(log67+2log6x13log6y5log6z) log(x1)log(3x+5)=logx log4(x2)+log4(x+5)=log48 3。 14(log25+3log2x42log2y7log2z) 求解xlog7(x+2)+log7(x3)=log724
  • https://query.libretexts.org/Idioma_Portugues/Algebra_intermediaria_(OpenStax)/10%3A_Fun%C3%A7%C3%B5es_exponenciais_e_logar%C3%ADtmicas/10.0E%3A_Cap%C3%ADtulo_10_Exerc%C3%ADcios_de_revis%C3%A3o
    Nos exercícios a seguir, para cada conjunto de pares ordenados, determine se ela representa uma função e, em caso afirmativo, é a função um a um. Nos exercícios a seguir, determine se cada gráfico é o...Nos exercícios a seguir, para cada conjunto de pares ordenados, determine se ela representa uma função e, em caso afirmativo, é a função um a um. Nos exercícios a seguir, determine se cada gráfico é o gráfico de uma função e, em caso afirmativo, é um para um. 2. log58+2log5a+6log5b+log5c3log5d log(x1)log(3x+5)=logx Resolva parax:log7(x+2)+log7(x3)=log724
  • https://query.libretexts.org/Kiswahili/Algebra_ya_kati_(OpenStax)/10%3A_Kazi_za_kielelezo_na_za_Logarithmic/10.0E%3A_Sura_ya_10_Mazoezi_Mapitio
    Katika mazoezi yafuatayo, kwa kila seti ya jozi zilizoamriwa, onyesha ikiwa inawakilisha kazi na ikiwa ni hivyo, ni kazi moja kwa moja. 2. \(\begin{array}{l}{\log _{5} 8+2 \log _{5} a+6 \log _{5} b} {...Katika mazoezi yafuatayo, kwa kila seti ya jozi zilizoamriwa, onyesha ikiwa inawakilisha kazi na ikiwa ni hivyo, ni kazi moja kwa moja. 2. log58+2log5a+6log5b+log5c3log5d log(x1)log(3x+5)=logx 3. 14(log25+3log2x42log2y7log2z) Tatua kwax:log7(x+2)+log7(x3)=log724
  • https://query.libretexts.org/Francais/Alg%C3%A8bre_interm%C3%A9diaire_(OpenStax)/10%3A_Fonctions_exponentielles_et_logarithmiques/10.0E%3A_Chapitre_10_Exercices_de_r%C3%A9vision
    Dans les exercices suivants, utilisez la propriété de produit des logarithmes pour écrire chaque logarithme sous la forme d'une somme de logarithmes. 2. \(\begin{array}{l}{\log _{5} 8+2 \log _{5} a+6 ...Dans les exercices suivants, utilisez la propriété de produit des logarithmes pour écrire chaque logarithme sous la forme d'une somme de logarithmes. 2. log58+2log5a+6log5b+log5c3log5d log(x1)log(3x+5)=logx 3. 14(log25+3log2x42log2y7log2z) Résolvez pourx :log7(x+2)+log7(x3)=log724
  • https://query.libretexts.org/%D8%A7%D9%84%D9%84%D8%BA%D8%A9_%D8%A7%D9%84%D8%B9%D8%B1%D8%A8%D9%8A%D8%A9/%D8%A7%D9%84%D8%AC%D8%A8%D8%B1_%D8%A7%D9%84%D9%85%D8%AA%D9%88%D8%B3%D8%B7_(OpenStax)/10%3A_%D8%A7%D9%84%D8%AF%D9%88%D8%A7%D9%84_%D8%A7%D9%84%D8%A3%D8%B3%D9%8A%D8%A9_%D9%88%D8%A7%D9%84%D9%84%D9%88%D8%BA%D8%A7%D8%B1%D9%8A%D8%AA%D9%85%D9%8A%D8%A9/10.0E%3A_%D8%A7%D9%84%D9%81%D8%B5%D9%84_10_%D8%AA%D9%85%D8%A7%D8%B1%D9%8A%D9%86_%D8%A7%D9%84%D9%85%D8%B1%D8%A7%D8%AC%D8%B9%D8%A9
    2. log58+2log5a+6log5b+log5c3log5d 4. \(\begin{array}{l}{\frac{1}{3}\left(\log _{6} 7+2 \log _{6} x-1-3 \log _{6} y\right.} {-5 \l...2. log58+2log5a+6log5b+log5c3log5d 4. 13(log67+2log6x13log6y5log6z) log(x1)log(3x+5)=logx log4(x2)+log4(x+5)=log48 3. 14(log25+3log2x42log2y7log2z) حل لـx:log7(x+2)+log7(x3)=log724