Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 
Global

Search

Searching in
About 3 results
  • https://query.libretexts.org/Francais/Livre_%3A_Calculus_(OpenStax)/03%3A_Produits_d%C3%A9riv%C3%A9s/3.02%3A_La_d%C3%A9riv%C3%A9e_en_tant_que_fonction
    f(x)Il est différenciable àa, puisf(a) existe et, si nous le laissons faireh=xa, nous l'avons faitx=a+hh=xa0, et comme nous pouvons le voirxa. &= \ lim...f(x)Il est différenciable àa, puisf(a) existe et, si nous le laissons faireh=xa, nous l'avons faitx=a+hh=xa0, et comme nous pouvons le voirxa. &= \ lim_ {x→a} \ left (\ frac {f (x) −f (a)} {x−a} (⋅ x−a) +f (a) \ right) & \ text {Multipliez et divisez} (f (x) −f (a)) \ text {par} x−a. \ \ [4pt] &= \ left (\ lim_ {x→a} \ frac {f (x) −f (a)} {x−a} \ right) ⋅ \ gauche (\ lim_ {x→a} \ ; (x−a) \ droite) + \ lim_ {x→a} f (a) \ \ [4 points]
  • https://query.libretexts.org/Idioma_Portugues/Livro%3A_Calculus_(OpenStax)/03%3A_Derivados/3.02%3A_A_derivada_como_fun%C3%A7%C3%A3o
    \ (\ begin {align*}\ estilo de exibição\ lim_ {x→a} f (x) &=\ lim_ {x→a}\;\ big (f (x) −f (a) +f (a)\ grande)\ [4pt] &=\ lim_ {x→a}\ left (\ frac {f (x) −f (a)} {x−a}. (x−a) +f (a)\ right) & &\ text {...\ (\ begin {align*}\ estilo de exibição\ lim_ {x→a} f (x) &=\ lim_ {x→a}\;\ big (f (x) −f (a) +f (a)\ grande)\ [4pt] &=\ lim_ {x→a}\ left (\ frac {f (x) −f (a)} {x−a}. (x−a) +f (a)\ right) & &\ text {Multiplique e divida} (f (x) −f (a))\ text {por} x−a.\\ [4pt] &=\ left (\ lim_ {x→a}\ frac {f (x) −f (a)} {x−a}\ direita) ‣\ esquerda (\ lim_ {x→a}\; (x−a)\ direita) +\ lim_ {x→a} f (a)\\ [4pt]
  • https://query.libretexts.org/Kiswahili/Kitabu%3A_Calculus_(OpenStax)/03%3A_Derivatives/3.02%3A_Derivative_kama_Kazi
    &=\ lim_ {x→ a}\ kushoto (\ frac {f (x) -f (a)} {x-a}} (x-a) +f (a)\ haki) & &\ maandishi {Kuzidisha na ugawanye} (f (x) -f (a))\ maandishi {na} x-a.\\ [4pt] \ (\ displaystyle\ kuanza {align*}\ lim_ {...&=\ lim_ {x→ a}\ kushoto (\ frac {f (x) -f (a)} {x-a}} (x-a) +f (a)\ haki) & &\ maandishi {Kuzidisha na ugawanye} (f (x) -f (a))\ maandishi {na} x-a.\\ [4pt] \ (\ displaystyle\ kuanza {align*}\ lim_ {x→ -10^}\ frac {f (x) -f (-10)} {x+10} &=\ lim_ {x→ ,1-10^}\ frac {\ frac {1} {10} {10} x ^ 2+c-5} {x+10}\\ [4pt] \ (\ displaystyle\ kuanza {align*}\ lim_ {x→ -10^+}\ frac {f (x) -f (-10)} {x+10} &=\ lim_ {x→ -10^+}\ frac {}\ frac {4} {4} x+\ frac {5} {2} -5} {x+10}\\ [4pt]