12.R: Utangulizi wa Calculus (Tathmini)
- Page ID
- 181338
12.1: Kupata Mipaka - Njia za Nambari na za kielelezo
Kwa mazoezi 1-6, tumia Kielelezo hapa chini.
1)\(\lim \limits_{x \to -1^+}f(x)\)
- Jibu
-
\(2\)
2)\(\lim \limits_{x \to -1^-}f(x)\)
3)\(\lim \limits_{x \to -1}f(x)\)
- Jibu
-
haipo
4)\(\lim \limits_{x \to 3}f(x)\)
5) Ni maadili gani ya\(x\) kazi ya kuacha? Ni hali gani ya kuendelea inavunjwa?
- Jibu
-
Discontinuous katika\(x=-1\left (\lim \limits_{x \to a}f(x) \text{ does not exist} \right )\)\(x=3\left (\text{ jump discontinuity} \right )\),, na\(x=7\left (\lim \limits_{x \to a}f(x) \text{ does not exist} \right )\).
6) Kutumia Jedwali hapa chini, makadirio\(\lim \limits_{x \to 0}f(x)\).
\(x\) | \(F(x)\) |
---|---|
\ (x\) "> -0.1 | \ (F (x)\) "> 2.875 |
\ (x\) ">-0.01 | \ (F (x)\) "> 2.92 |
\ (x\) "> -0.001 | \ (F (x)\) "> 2.998 |
\ (x\) "> 0 | \ (F (x)\) "> Haijafafanuliwa |
\ (x\) ">0.001 | \ (F (x)\) "> 2.9987 |
\ (x\) ">0.01 | \ (F (x)\) "> 2.865 |
\ (x\) "> 0.1 | \ (F (x)\) "> 2.78145 |
\ (x\) ">0.15 | \ (F (x)\) "> 2.678 |
- Jibu
-
\(3\)
Kwa mazoezi 7-9, pamoja na matumizi ya matumizi ya graphing, tumia ushahidi wa namba au wa kielelezo ili kuamua mipaka ya kushoto na ya kulia ya kazi iliyotolewa kama\(x\) mbinu\(a\). Kama kazi ina kikomo kama\(x\) mbinu\(a\), hali yake. Ikiwa sio, jadili kwa nini hakuna kikomo.
7)\(f(x)=\begin{cases} \left | x \right |-1 & \text{ if } x\neq 1 \\ x^3 & \text{ if } x= 1 \end{cases} a=1\)
8)\(f(x)=\begin{cases} \dfrac{1}{x+1} & \text{ if } x= -2 \\ (x+1)^2 & \text{ if } x\neq -2 \end{cases} a=-2\)
- Jibu
-
\(\lim \limits_{x \to -2}f(x)=1\)
9)\(f(x)=\begin{cases} \sqrt{x+3} & \text{ if } x<1 \\ -\sqrt[3]{x} & \text{ if } x>1 \end{cases} a=1\)
12.2: Kupata Mipaka - Mali ya Mipaka
Kwa mazoezi 1-6, pata mipaka ikiwa\(\lim \limits_{x \to c} f(x)=-3\) na\(\lim \limits_{x \to c} g(x)=5\).
1)\(\lim \limits_{x \to c} (f(x)+g(x))\)
- Jibu
-
\(2\)
2)\(\lim \limits_{x \to c} \dfrac{f(x)}{g(x)}\)
3)\(\underset{x \to c}{\lim } (f(x)\cdot g(x))\)
- Jibu
-
\(-15\)
4)\(\lim \limits_{x \to 0^+} f(x), f(x)=\begin{cases} 3x^2+2x+1 & x>0 \\ 5x+3 & x<0 \end{cases}\)
5)\(\lim \limits_{x \to 0^-} f(x), f(x)=\begin{cases} 3x^2+2x+1 & x>0 \\ 5x+3 & x<0 \end{cases}\)
- Jibu
-
\(3\)
6)\(\lim \limits_{x \to 3^+} (3x-〚x〛)\)
Kwa mazoezi 7-11, tathmini mipaka kwa kutumia mbinu za algebraic.
7)\(\lim \limits_{h \to 0} \left ( \dfrac{(h+6)^2-36}{h} \right )\)
- Jibu
-
\(12\)
8)\(\lim \limits_{x \to 25} \left ( \dfrac{x^2-625}{\sqrt{x}-5} \right )\)
9)\(\lim \limits_{x \to 1} \left ( \dfrac{-x^2-9x}{x} \right )\)
- Jibu
-
\(-10\)
10)\(\lim \limits_{x \to 4} \left ( \dfrac{7-\sqrt{12x+1}}{x-4} \right )\)
11)\(\lim \limits_{x \to 3} \left ( \dfrac{\frac{1}{3}+\frac{1}{x}}{3+x} \right )\)
- Jibu
-
\(-\dfrac{1}{9}\)
12.3: Mwendelezo
Kwa mazoezi 1-5, tumia ushahidi wa namba ili uone kama kikomo kipo\(x=a\). Ikiwa sio, kuelezea tabia ya grafu ya kazi\(x=a\).
1)\(f(x)=\dfrac{-2}{x-4};\; a=4\)
2)\(f(x)=\dfrac{-2}{(x-4)^2};\; a=4\)
- Jibu
-
Kwa\(x=4\), kazi ina asymptote ya wima.
3)\(f(x)=\dfrac{-x}{x^2-x-6};\; a=3\)
4)\(f(x)=\dfrac{6x^2+23x+20}{4x^2-25};\; a=-\dfrac{5}{2}\)
- Jibu
-
discontinuity kutolewa katika\(a=-\dfrac{5}{2}\)
5)\(f(x)=\dfrac{\sqrt{x}-3}{9-x};\; a=9\)
Kwa mazoezi 6-12, tambua wapi kazi iliyotolewa\(f(x)\) inaendelea. Ambapo sio kuendelea, hali ambayo hali inashindwa, na uainishe discontinuities yoyote.
6)\(f(x)=x^2-2x-15\)
- Jibu
-
kuendelea\((-\infty, \infty)\)
7)\(f(x)=\dfrac{x^2-2x-15}{x-5}\)
8)\(f(x)=\dfrac{x^2-2x}{x^2-4x+4}\)
- Jibu
-
kutolewa discontinuity katika\(x=2\). \(f(2)\)si defined, lakini mipaka zipo.
9)\(f(x)=\dfrac{x^3-125}{2x^2-12x+10}\)
10)\(f(x)=\dfrac{x^2-\frac{1}{x}}{2-x}\)
- Jibu
-
kukomesha saa\(x=0\) na\(x=2\). Wote\(f(0)\) na\(f(2)\) si defined.
11)\(f(x)=\dfrac{x+2}{x^2-3x-10}\)
12)\(f(x)=\dfrac{x+2}{x^3+8}\)
- Jibu
-
kutolewa discontinuity katika\(x=-2\). \(f(-2)\)si defined.
12.4: Derivatives
Kwa mazoezi 1-5, pata kiwango cha wastani cha mabadiliko\(f(x)=\dfrac{f(x+h)-f(x)}{h}\).
1)\(f(x)=3x+2\)
2)\(f(x)=5\)
- Jibu
-
\(0\)
3)\(f(x)=\dfrac{1}{x+1}\)
4)\(f(x)=\ln (x)\)
- Jibu
-
\(f(x)=\dfrac{\ln (x+h)-\ln (x)}{h}\)
5)\(f(x)=e^{2x}\)
Kwa mazoezi 6-7, tafuta derivative ya kazi.
6)\(f(x)=4x-6\)
- Jibu
-
\(4\)
7)\(f(x)=5x^2-3x\)
8) Pata usawa wa mstari wa tangent kwenye grafu ya\(f(x)\)\(x\) thamani iliyoonyeshwa. \[f(x)=-x^3+4x;\; x=2 \nonumber \]
- Jibu
-
\(y=-8x+16\)
9) Kwa zoezi zifuatazo, kwa msaada wa matumizi ya graphing, kuelezea kwa nini kazi haijulikani kila mahali kwenye uwanja wake. Taja pointi ambapo kazi haijulikani. \[f(x)=\dfrac{x}{\left | x \right |} \nonumber \]
10) Kutokana na kwamba kiasi cha koni ya mviringo ya kulia ni\(V=\dfrac{1}{3}\pi r^2h\) na kwamba koni iliyotolewa ina urefu wa urefu wa\(9\) cm na urefu wa radius ya kutofautiana, kupata kiwango cha instantaneous cha mabadiliko ya kiasi kuhusiana na urefu wa radius wakati radius ni\(2\) cm. Kutoa jibu halisi katika suala la\(π\).
- Jibu
-
\(12\pi \)
Mazoezi mtihani
Kwa mazoezi 1-6, tumia grafu ya\(f\) kwenye Kielelezo hapa chini.
1)\(f(1)\)
- Jibu
-
\(3\)
2)\(\lim \limits_{x \to -1^+} f(x)\)
3)\(\lim \limits_{x \to -1^-} f(x)\)
- Jibu
-
\(0\)
4)\(\lim \limits_{x \to -1} f(x)\)
5)\(\lim \limits_{x \to -2} f(x)\)
- Jibu
-
\(-1\)
6) Ni maadili gani ya\(x\)\(f\) kuacha? Ni mali gani ya kuendelea inavunjwa?
7)\(f(x)=\begin{cases} \dfrac{1}{3}-3 & \text{ if } x\leq 2 \\ x^3+1 & \text{ if } x>2 \end{cases} a=2\)
- Jibu
-
\(\lim \limits_{x \to 2^-} f(x)=-\dfrac{5}{2}a\)na\(\lim \limits_{x \to 2^+} f(x)=9\)
Hivyo, kikomo cha kazi kama\(x\) mbinu\(2\) haipo.
8)\(f(x)=\begin{cases} x^3+1 & \text{ if } x<1 \\ 3x^2-1 & \text{ if } x=1\; a=1 \\ -\sqrt{x+3}+4 & \text{ if } x>1 \end{cases}\)
Kwa mazoezi 9-11, tathmini kila kikomo kwa kutumia mbinu za algebraic.
9)\(\lim \limits_{x \to -5} \left ( \dfrac{\frac{1}{5}+\frac{1}{x}}{10+2x} \right )\)
- Jibu
-
\(-\dfrac{1}{50}\)
10)\(\lim \limits_{h \to 0} \left ( \dfrac{\sqrt{h^2+25}-5}{h^2} \right )\)
11)\(\lim \limits_{h \to 0} \left ( \dfrac{1}{h}-\dfrac{1}{h^2+h} \right )\)
- Jibu
-
\(1\)
Kwa mazoezi 12-13, onyesha kama kazi iliyopewa\(f\) inaendelea. Ikiwa inaendelea, onyesha kwa nini. Ikiwa haiendelei, hali ambayo hali inashindwa.
12)\(f(x)=\sqrt{x^2-4}\)
13)\(f(x)=\dfrac{x^3-4x^2-9x+36}{x^3-3x^2+2x-6}\)
- Jibu
-
discontinuity kutolewa katika\(x=3\)
Kwa mazoezi 14-16, tumia ufafanuzi wa derivative ili kupata derivative ya kazi iliyotolewa\(x=a\).
14)\(f(x)=\dfrac{3}{5+2x}\)
15)\(f(x)=\dfrac{3}{\sqrt{x}}\)
- Jibu
-
\(f'(x)=-\dfrac{3}{2a^{\frac{3}{2}}}\)
16)\(f(x)=2x^2+9x\)
17) Kwa grafu katika Kielelezo hapa chini, onyesha ambapo kazi inaendelea/kuacha na kutofautishwa/haijulikani.
- Jibu
-
discontinuous katika\(-2,0\), si differentiable katika\(-2,0, 2\).
Kwa mazoezi 18-19, kwa msaada wa matumizi ya graphing, kuelezea kwa nini kazi haijulikani kila mahali kwenye uwanja wake. Taja pointi ambapo kazi haijulikani.
18)\(f(x)=\left | x-2 \right | - \left | x+2 \right |\)
19)\(f(x)=\dfrac{2}{1+e^{\frac{2}{x}}}\)
- Jibu
-
si differentiable katika\(x=0\) (hakuna kikomo)
Kwa mazoezi 20-24, kueleza notation kwa maneno wakati urefu wa projectile kwa miguu\(s\), ni kazi ya muda\(t\) katika sekunde baada ya uzinduzi na hutolewa na kazi\(s(t)\).
20)\(s(0)\)
21)\(s(2)\)
- Jibu
-
urefu wa projectile kwa\(t=2\) sekunde
22)\(s'(2)\)
23)\(\dfrac{s(2)-s(1)}{2-1}\)
- Jibu
-
kasi ya wastani kutoka\(t=1\) kwa\(t=2\)
24)\(s(t)=0\)
Kwa mazoezi 25-28, tumia teknolojia ili kutathmini kikomo.
25)\(\lim \limits_{x \to 0}\dfrac{\sin (x)}{3x}\)
- Jibu
-
\(\dfrac{1}{3}\)
26)\(\lim \limits_{x \to 0}\dfrac{\tan ^2(x)}{2x}\)
27)\(\lim \limits_{x \to 0}\dfrac{\sin (x)(1-\cos (x))}{2x^2}\)
- Jibu
-
\(0\)
28) Tathmini kikomo kwa mkono.
\[\lim \limits_{x \to 1}f(x), \text{ where } f(x)=\begin{cases} 4x-7 & x\neq 1 \\ x^2-4 & x= 1 \end{cases} \nonumber \]
Kwa thamani gani (s) ya\(x\) ni kazi chini ya kuacha?
\[f(x)=\begin{cases} 4x-7 & x\neq 1 \\ x^2-4 & x= 1 \end{cases} \nonumber \]
Kwa mazoezi 29-32, fikiria kazi ambayo grafu inaonekana kwenye Kielelezo.
29) Kupata kiwango cha wastani wa mabadiliko ya kazi kutoka\(x=1\) kwa\(x=3\).
- Jibu
-
\(2\)
30) Kupata maadili yote ya\(x\) saa ambayo\(f'(x)=0\).
- Jibu
-
\(x=1\)
31) Pata maadili yote ambayo\(f'(x)\) haipo.\(x\)
32) Pata usawa wa mstari wa tangent kwenye grafu\(f\) ya hatua iliyoonyeshwa:\(f(x)=3x^2-2x-6,\; x=-2\)
- Jibu
-
\(y=-14x-18\)
Kwa mazoezi 33-34, tumia kazi\(f(x)=x(1-x)^{\frac{2}{5}}\)
33) Graph kazi\(f(x)=x(1-x)^{\tfrac{2}{5}}\) kwa kuingia\(f(x)=x\left ((1-x)^2 \right )^{\tfrac{1}{5}}\) na kisha kwa kuingia\(f(x)=x\left ((1-x)^{\tfrac{1}{5}} \right )^2\).
34) Kuchunguza tabia ya grafu ya\(f(x)\) karibu\(x=1\) na kuchora kazi kwenye nyanja zifuatazo,\([0.9, 1.1], [0.99, 1.01], [0.999, 1.001]\), na\([0.9999, 1.0001]\). Tumia habari hii ili kuamua kama kazi inaonekana kuwa tofauti katika\(x=1\).
- Jibu
-
Grafu haipatikani katika\(x=1\) (cusp).
Kwa mazoezi 35-42, tafuta derivative ya kila kazi kwa kutumia ufafanuzi: \(\lim \limits_{h \to 0} \dfrac{f(x+h)-f(x)}{h}\)
35)\(f(x)=2x-8\)
36)\(f(x)=4x^2-7\)
- Jibu
-
\(f'(x)=8x\)
37)\(f(x)=x-\dfrac{1}{2}x^2\)
38)\(f(x)=\dfrac{1}{x+2}\)
- Jibu
-
\(f'(x)=-\dfrac{1}{(2+x)^2}\)
39)\(f(x)=\dfrac{3}{x-1}\)
40)\(f(x)=-x^3+1\)
- Jibu
-
\(f'(x)=-3x^2\)
41)\(f(x)=x^2+x^3\)
42)\(f(x)=\sqrt{x-1}\)
- Jibu
-
\(f'(x)=-\dfrac{1}{2\sqrt{x-1}}\)