Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js
Skip to main content
Library homepage
 
Global

10.4: Mzunguko wa Axes

Malengo ya kujifunza
  • Kutambua sehemu nondegenerate conic kutokana na equations yao ya jumla fomu.
  • Tumia mzunguko wa axes formula.
  • Andika equations ya conics kuzungushwa katika fomu ya kawaida.
  • Tambua conics bila axes zinazozunguka.

Kama tulivyoona, sehemu conic ni sumu wakati ndege intersects mbili kulia mviringo mbegu iliyokaa ncha kwa ncha na kupanua kubwa mbali katika pande kinyume, ambayo sisi pia wito koni. Njia ambayo sisi hupiga koni itaamua aina ya sehemu ya conic iliyoundwa katika makutano. Mduara hutengenezwa kwa kupiga koni na ndege perpendicular kwa mhimili wa ulinganifu wa koni. Ellipse hutengenezwa kwa kupiga koni moja na ndege iliyopandwa sio perpendicular kwa mhimili wa ulinganifu. Parabola hutengenezwa kwa kupiga ndege kwa njia ya juu au chini ya koni mbili, wakati hyperbola hutengenezwa wakati ndege inapiga vipande juu na chini ya koni (Kielelezo10.4.1).

imageedit_2_4675119068.jpg

Kielelezo10.4.1: sehemu nondegenerate conic

Ellipses, miduara, hyperbolas, na parabolas wakati mwingine huitwa sehemu za conic zisizo na degenerate, kinyume na sehemu za conic zilizoharibika, ambazo zinaonyeshwa kwenye Mchoro10.4.2. matokeo degenerate conic wakati ndege intersects koni mara mbili na hupita kupitia kilele. Kulingana na angle ya ndege, aina tatu za sehemu za conic zilizoharibika zinawezekana: hatua, mstari, au mistari miwili ya kuingiliana.

imageedit_6_5854995623.jpg

Kielelezo10.4.2: Sehemu za conic zilizoharibika

Kutambua Conics Nondegenerate katika Fomu ya jumla

Katika sehemu zilizopita za sura hii, tuna ililenga equations fomu ya kawaida kwa sehemu nondegenerate conic. Katika sehemu hii, sisi kuhama lengo letu kwa jumla fomu equation, ambayo inaweza kutumika kwa ajili ya conic yoyote. Fomu ya jumla imewekwa sawa na sifuri, na maneno na coefficients hutolewa kwa utaratibu fulani, kama inavyoonyeshwa hapa chini.

Ax2+Bxy+Cy2+Dx+Ey+F=0

ambapoA,B, naC si wote sifuri. Tunaweza kutumia maadili ya coefficients kutambua aina gani conic inawakilishwa na equation iliyotolewa.

Unaweza kugundua kwamba jumla fomu equation inaxy neno kwamba sisi si kuona katika yoyote ya equations kiwango fomu. Kama tutakavyojadili baadaye,xy neno huzunguka conic wakati wowoteB si sawa na sifuri.

Jedwali10.4.1
Sehemu za Conic Mfano
duaradufu 4x2+9y2=1
mduara 4x2+4y2=1
hyperbola 4x29y2=1
parabola 4x2=9yau4y2=9x
mstari mmoja 4x+9y=1
mistari ya kuingiliana (x4)(y+4)=0
mistari sambamba (x4)(x9)=0
uhakika 4x2+4y2=0
hakuna grafu 4x2+4y2=1
AINA YA JUMLA YA SEHEMU ZA CONIC

Sehemu ya conic ina fomu ya jumla

Ax2+Bxy+Cy2+Dx+Ey+F=0

ambapoA,B, naC si wote sifuri. Jedwali10.4.2 muhtasari sehemu tofauti conic ambapoB=0,A naC ni nonzero namba halisi. Hii inaonyesha kwamba conic haijawahi kuzungushwa.

Jedwali10.4.2
duaradufu Ax2+Cy2+Dx+Ey+F=0,AC naAC>0
mduara Ax2+Cy2+Dx+Ey+F=0,A=C
hyperbola Ax2Cy2+Dx+Ey+F=0auAx2+Cy2+Dx+Ey+F=0, wapiA naC ni chanya
parabola Ax2+Dx+Ey+F=0auCy2+Dx+Ey+F=0
Jinsi ya: Kutokana na equation ya conic, kutambua aina ya conic
  1. Andika upya equation kwa fomu ya jumla (Equation\ ref {gen}),Ax2+Bxy+Cy2+Dx+Ey+F=0
  2. Tambua maadili yaA naC kutoka kwa fomu ya jumla.
    • IkiwaA naC sio sifuri, uwe na ishara sawa, na si sawa kwa kila mmoja, basi grafu inaweza kuwa duaradufu.
    • IkiwaA naC ni sawa na isiyo na sifuri na kuwa na ishara sawa, basi grafu inaweza kuwa mduara.
    • IkiwaA naC sio zero na zina ishara tofauti, basi grafu inaweza kuwa hyperbola.
    • Ikiwa amaA auC ni sifuri, basi grafu inaweza kuwa parabola.

IkiwaB=0, sehemu ya conic itakuwa na axes wima na/au usawa. IkiwaB haifai 0, kama inavyoonyeshwa hapo chini, sehemu ya conic imezungushwa. Angalia maneno “inaweza kuwa” katika ufafanuzi. Hiyo ni kwa sababu equation inaweza kuwakilisha sehemu conic kabisa, kulingana na maadili yaAB,C,D,E, naF. Kwa mfano, kesi iliyoharibika ya mduara au ellipse ni hatua:

Ax2+By2=0,

wakatiA naB kuwa na ishara hiyo.

Kesi iliyoharibika ya hyperbola ni mistari miwili ya moja kwa moja:Ax2+By2=0, wakatiA naB kuwa na ishara tofauti.

Kwa upande mwingine, equationAx2+By2+1=0, wakatiA naB ni chanya haina kuwakilisha grafu wakati wote, kwa kuwa hakuna halisi awali jozi ambayo kukidhi yake.

Mfano10.4.1: Identifying a Conic from Its General Form

Tambua grafu ya kila sehemu zifuatazo za nondegenerate za conic.

  1. 4x29y2+36x+36y125=0
  2. 9y2+16x+36y10=0
  3. 3x2+3y22x6y4=0
  4. 25x24y2+100x+16y+20=0

Suluhisho

  1. Kuandika upya fomu ya jumla (Equation\ ref {gen}), tunaAx2+Bxy+Cy2+Dx+Ey+F=04x2+0xy+(9)y2+36x+36y+(125)=0A=4 naC=9, hivyo tunaona hiloA naC kuwa na ishara tofauti. Grafu ya equation hii ni hyperbola.
  2. Kuandika upya fomu ya jumla (Equation\ ref {gen}), tunaAx2+Bxy+Cy2+Dx+Ey+F=00x2+0xy+9y2+16x+36y+(10)=0A=0 naC=9. Tunaweza kuamua kwamba equation ni parabola, tanguA ni sifuri.
  3. Kuandika upya fomu ya jumla (Equation\ ref {gen}), tunaAx2+Bxy+Cy2+Dx+Ey+F=03x2+0xy+3y2+(2)x+(6)y+(4)=0A=3 naC=3. Kwa sababuA=C, grafu ya equation hii ni mduara.
  4. Kuandika upya fomu ya jumla (Equation\ ref {gen}), tunaAx2+Bxy+Cy2+Dx+Ey+F=0(25)x2+0xy+(4)y2+100x+16y+20=0A=25 naC=4. Kwa sababuAC>0 naAC, grafu ya equation hii ni duaradufu.
Zoezi10.4.1

Tambua grafu ya kila sehemu zifuatazo za nondegenerate za conic.

  1. 16y2x2+x4y9=0
  2. 16x2+4y2+16x+49y81=0
Jibu

hyperbola

Jibu b

duaradufu

Kutafuta Uwakilishi Mpya wa Ulinganisho uliotolewa baada ya Kupokezana kupitia Angle iliyotolewa

Hadi sasa, tumeangalia usawa wa sehemu za conic bilaxy muda, ambayo inaunganisha grafu na x - na y -axes. Tunapoongezaxy neno, tunazunguka conic kuhusu asili. Ikiwa x - na y -axes huzungushwa kupitia pembe, semaθ, basi kila hatua kwenye ndege inaweza kufikiriwa kuwa na uwakilishi wawili:(x,y) kwenye ndege ya Cartesian na x -axis ya awali na y -axis, na(x,y) kwenye ndege mpya inavyoelezwa na axes mpya, zinazozungushwa, inayoitwa x' -axis na y-axis (Kielelezo10.4.3).

CNX_Precalc_Figure_10_04_003.jpg

Kielelezo10.4.3: Grafu ya ellipse iliyozungushwax2+y2xy15=0

Tutapata uhusiano katix nay kwenye ndege ya Cartesianx nay kwenye ndege mpya iliyozungushwa (Kielelezo10.4.4).

CNX_Precalc_Figure_10_04_004.jpg

Kielelezo10.4.4: Ndege ya Cartesian nax - nay -axes nax kusababisha - nay -axes zinazoundwa na mzunguko kwa angleθ.

Ya awali ya kuratibu x - na y -axes ina vectors kitengoˆi naˆj. Axes ya kuratibu iliyozunguka ina vectorsˆi kitengoˆj na.Angleθ inajulikana kama angle ya mzunguko (Kielelezo10.4.5). Tunaweza kuandika vectors mpya ya kitengo kulingana na wale wa awali.

ˆi=cosθˆi+sinθˆj

ˆj=sinθˆi+cosθˆj

CNX_Precalc_Figure_10_04_005.jpg

Kielelezo10.4.5: Uhusiano kati ya ndege za zamani na mpya za kuratibu.

Fikiria vectoru katika ndege mpya ya kuratibu. Inaweza kuwakilishwa kwa suala la axes zake za kuratibu.

u=xi+yj=x(icosθ+jsinθ)+y(isinθ+jcosθ)Substitute.=ixcosθ+jxsinθiysinθ+jycosθDistribute.=ixcosθiysinθ+jxsinθ+jycosθApply commutative property.=(xcosθysinθ)i+(xsinθ+ycosθ)jFactor by grouping.

Kwa sababuu=xi+yj, tuna uwakilishi wax nay katika suala la mfumo mpya wa kuratibu.

x=xcosθysinθ

na

y=xsinθ+ycosθ

USAWA WA MZUNGUKO

Ikiwa hatua(x,y) kwenye ndege ya Cartesian inawakilishwa kwenye ndege mpya ya kuratibu ambapo shoka za mzunguko zinaundwa kwa kupokezana angleθ kutoka kwa mhimili mzuri wa x, basi kuratibu za uhakika kuhusiana na shoka mpya ni(x,y). Tunaweza kutumia equations zifuatazo za mzunguko kufafanua uhusiano kati(x,y) na(x,y):

x=xcosθysinθ

na

y=xsinθ+ycosθ

Jinsi ya: Kutokana na equation ya conic, kupata uwakilishi mpya baada ya kupokezana kupitia angle
  1. Kupatax nay wapix=xcosθysinθ nay=xsinθ+ycosθ.
  2. Badilisha maneno kwax nay ndani ya equation iliyotolewa, kisha kurahisisha.
  3. Andika equationsx nay kwa fomu ya kawaida.
Mfano10.4.2: Finding a New Representation of an Equation after Rotating through a Given Angle

Kupata uwakilishi mpya wa equation2x2xy+2y230=0 baada kupokezana kwa njia ya angle ya\theta=45°.

Suluhisho

Kupatax nay, wapix=x^\prime \cos \theta−y^\prime \sin \theta nay=x^\prime \sin \theta+y^\prime \cos \theta.

Kwa sababu\theta=45°,

\begin{align*} x &= x^\prime \cos(45°)−y^\prime \sin(45°) \\[4pt] x &= x^\prime \left(\dfrac{1}{\sqrt{2}}\right)−y^\prime \left(\dfrac{1}{\sqrt{2}}\right) \\[4pt] x &=\dfrac{x^\prime −y^\prime }{\sqrt{2}} \end{align*}

na

\begin{align*} y &= x^\prime \sin(45°)+y^\prime \cos(45°) \\[4pt] y &= x^\prime \left(\dfrac{1}{\sqrt{2}}\right) + y^\prime \left(\dfrac{1}{\sqrt{2}}\right) \\[4pt] y &= \dfrac{x^\prime +y^\prime }{\sqrt{2}} \end{align*}

Mbadalax=x^\prime \cos\theta−y^\prime \sin\theta nay=x^\prime \sin \theta+y^\prime \cos \theta ndani ya2x^2−xy+2y^2−30=0.

2{\left(\dfrac{x^\prime −y^\prime }{\sqrt{2}}\right)}^2−\left(\dfrac{x^\prime −y^\prime }{\sqrt{2}}\right)\left(\dfrac{x^\prime +y^\prime }{\sqrt{2}}\right)+2{\left(\dfrac{x^\prime +y^\prime }{\sqrt{2}}\right)}^2−30=0

Kurahisisha.

\begin{array}{rl} 2\dfrac{(x^\prime−y^\prime )(x^\prime −y^\prime )}{2}−\dfrac{(x^\prime −y^\prime )(x^\prime +y^\prime )}{2}+2\dfrac{(x^\prime +y^\prime )(x^\prime +y^\prime )}{2}−30=0 & \text{FOIL method} \\[4pt] {x^\prime }^2−2x^\prime y^\prime +{y^\prime }^2−\dfrac{({x^\prime }^2−{y^\prime }^2)}{2}+{x^\prime }^2+2x^\prime y^\prime +{y^\prime }^2−30=0 & \text{Combine like terms.} \\[4pt] 2{x^\prime }^2+2{y^\prime }^2−\dfrac{({x^\prime }^2−{y^\prime }^2)}{2}=30 & \text{Combine like terms.} \\[4pt] 2(2{x^\prime }^2+2{y^\prime }^2−\dfrac{({x^\prime }^2−{y^\prime }^2)}{2})=2(30) & \text{Multiply both sides by 2.} \\[4pt] 4{x^\prime }^2+4{y^\prime }^2−({x^\prime }^2−{y^\prime }^2)=60 & \text{Simplify. } \\[4pt] 4{x^\prime }^2+4{y^\prime }^2−{x^\prime }^2+{y^\prime }2=60 & \text{Distribute.} \\[4pt] \dfrac{3{x^\prime }^2}{60}+\dfrac{5{y^\prime }^2}{60}=\dfrac{60}{60} & \text{Set equal to 1.} \end{array}

Andika equationsx^\prime nay^\prime katika fomu ya kawaida.

\dfrac{{x^\prime }^2}{20}+\dfrac{{y^\prime}^2}{12}=1 \nonumber

Equation hii ni duaradufu. Kielelezo\PageIndex{6} kinaonyesha grafu.

imageedit_10_2436746571.png

Kielelezo\PageIndex{6}

Kuandika Ulinganisho wa Conics iliyozunguka katika Fomu ya Standard

Sasa kwa kuwa tunaweza kupata fomu ya kawaida ya conic wakati tunapewa angle ya mzunguko, tutajifunza jinsi ya kubadilisha equation ya conic iliyotolewa katika fomuAx^2+Bxy+Cy^2+Dx+Ey+F=0 katika fomu ya kawaida kwa kupokezana shoka. Ili kufanya hivyo, tutaandika upya fomu ya jumla kama equation katika mfumox^\prime nay^\prime kuratibu bilax^\prime y^\prime muda, kwa kupokezana shoka kwa kipimo cha\theta kwamba satisfies

\cot(2\theta)=\dfrac{A−C}{B}

Tumejifunza tayari kwamba conic yoyote inaweza kuwakilishwa na equation shahada ya pili

Ax^2+Bxy+Cy^2+Dx+Ey+F=0

ambapoA,B, naC si wote sifuri. Hata hivyo, kamaB≠0, basi tunaxy muda kwamba kuzuia sisi kuandika upya equation katika hali ya kiwango. Ili kuondokana na hilo, tunaweza kugeuza axes kwa angle ya papo hapo\theta ambapo\cot(2\theta)=\dfrac{A−C}{B}.

  • Kama\cot(2\theta)>0, basi2\theta ni katika roboduara ya kwanza, na\theta ni kati ya(0°,45°).
  • Kama\cot(2\theta)<0, basi2\theta ni katika roboduara ya pili, na\theta ni kati ya(45°,90°).
  • IkiwaA=C, basi\theta=45°.
Jinsi ya: Kutokana na equation kwa conic katikax^\prime y^\prime system, rewrite the equation without the x^\prime y^\prime term in terms of x^\prime and y^\prime ,where the x^\prime and y^\prime axes are rotations of the standard axes by \theta degrees
  1. Kupata\cot(2\theta).
  2. Kupata\sin \theta na\cos \theta.
  3. Mbadala\sin \theta na\cos \theta ndanix=x^\prime \cos \theta−y^\prime \sin \theta nay=x^\prime \sin \theta+y^\prime \cos \theta.
  4. Badilisha usemi kwax nay ndani ya equation iliyotolewa, na kisha kurahisisha.
  5. Andika equationsx^\prime nay^\prime katika fomu ya kawaida kwa heshima na axes kuzungushwa.
Mfano\PageIndex{3}: Rewriting an Equation with respect to the x^\prime and y^\prime axes without the x^\prime y^\prime Term

Andika upya equation8x^2−12xy+17y^2=20 katikax^\prime y^\prime mfumo bilax^\prime y^\prime muda.

Suluhisho

Kwanza, tunapata\cot(2\theta).

8x^2−12xy+17y^2=20\rightarrow A=8,B=−12 naC=17

imageedit_14_9742345318.png

Kielelezo\PageIndex{7}

Kutoka Kielelezo\PageIndex{7}:

\begin{align*} \cot(2\theta) &=\dfrac{A−C}{B}=\dfrac{8−17}{−12} \\[4pt] & =\dfrac{−9}{−12}=\dfrac{3}{4} \end{align*}

\cot(2\theta)=\dfrac{3}{4}=\dfrac{\text{adjacent}}{\text{opposite}}

Hivyo hypotenuse ni

\begin{align*} 3^2+4^2 &=h^2 \\[4pt] 9+16 &=h^2 \\[4pt] 25&=h^2 \\[4pt] h&=5 \end{align*}

Kisha, tunapata\sin \theta na\cos \theta.

\begin{align*} \sin \theta &=\sqrt{\dfrac{1−\cos(2\theta)}{2}}=\sqrt{\dfrac{1−\dfrac{3}{5}}{2}}=\sqrt{\dfrac{\dfrac{5}{5}−\dfrac{3}{5}}{2}}=\sqrt{\dfrac{5−3}{5}⋅\dfrac{1}{2}}=\sqrt{\dfrac{2}{10}}=\sqrt{\dfrac{1}{5}} \\ \sin \theta &= \dfrac{1}{\sqrt{5}} \\ \cos \theta &= \sqrt{\dfrac{1+\cos(2\theta)}{2}}=\sqrt{\dfrac{1+\dfrac{3}{5}}{2}}=\sqrt{\dfrac{\dfrac{5}{5}+\dfrac{3}{5}}{2}}=\sqrt{\dfrac{5+3}{5}⋅\dfrac{1}{2}}=\sqrt{\dfrac{8}{10}}=\sqrt{\dfrac{4}{5}} \\ \cos \theta &= \dfrac{2}{\sqrt{5}} \end{align*}

Badilisha maadili ya\sin \theta na\cos \theta ndanix=x^\prime \cos \theta−y^\prime \sin \theta nay=x^\prime \sin \theta+y^\prime \cos \theta.

\begin{align*} x &=x'\cos \theta−y^\prime \sin \theta \\[4pt] &=x^\prime \left(\dfrac{2}{\sqrt{5}}\right)−y^\prime \left(\dfrac{1}{\sqrt{5}}\right) \\[4pt] &=\dfrac{2x^\prime −y^\prime }{\sqrt{5}} \end{align*}

na

\begin{align*} y&=x^\prime \sin \theta+y^\prime \cos \theta \\[4pt] &=x^\prime \left(\dfrac{1}{\sqrt{5}}\right)+y^\prime \left(\dfrac{2}{\sqrt{5}}\right) \\[4pt] &=\dfrac{x^\prime +2y^\prime }{\sqrt{5}} \end{align*}

Badilisha maneno kwax nay ndani ya equation iliyotolewa, na kisha kurahisisha.

\begin{align*} 8{\left(\dfrac{2x^\prime −y^\prime }{\sqrt{5}}\right)}^2−12\left(\dfrac{2x^\prime −y^\prime }{\sqrt{5}}\right)\left(\dfrac{x^\prime +2y^\prime }{\sqrt{5}}\right)+17{\left(\dfrac{x^\prime +2y^\prime }{\sqrt{5}}\right)}^2&=20 \\[4pt] 8\left(\dfrac{(2x^\prime −y^\prime )(2x^\prime −y^\prime )}{5}\right)−12\left(\dfrac{(2x^\prime −y^\prime )(x^\prime +2y^\prime )}{5}\right)+17\left(\dfrac{(x^\prime +2y^\prime )(x^\prime +2y^\prime )}{5}\right)&=20 \\[4pt] 8(4{x^\prime }^2−4x^\prime y^\prime +{y^\prime }^2)−12(2{x^\prime }^2+3x^\prime y^\prime −2{y^\prime }^2)+17({x^\prime }^2+4x^\prime y^\prime +4{y^\prime }^2)&=100 \\[4pt] 32{x^\prime }^2−32x^\prime y^\prime +8{y^\prime }^2−24{x^\prime }^2−36x^\prime y^\prime +24{y^\prime }^2+17{x^\prime }^2+68x^\prime y^\prime +68{y^\prime }^2&=100 \\[4pt] 25{x^\prime }^2+100{y^\prime }^2&=100 \\[4pt] \dfrac{25}{100}{x^\prime }^2+\dfrac{100}{100}{y^\prime }^2&=\dfrac{100}{100} \end{align*}

Andika equationsx^\prime nay^\prime katika fomu ya kawaida kwa heshima na mfumo mpya wa kuratibu.

\dfrac{{x^\prime }^2}{4}+\dfrac{{y^\prime }^2}{1}=1 \nonumber

Kielelezo\PageIndex{8} kinaonyesha grafu ya ellipse.

imageedit_18_8476133234.png

Kielelezo\PageIndex{8}

Zoezi\PageIndex{2}

Andika upya13x^2−6\sqrt{3}xy+7y^2=16 katikax^\prime y^\prime mfumo bilax^\prime y^\prime muda.

Jibu

\dfrac{{x^\prime }^2}{4}+\dfrac{{y^\prime }^2}{1}=1

Mfano\PageIndex{4} :Graphing an Equation That Has No x^\prime y^\prime Terms

Grafu equation yafuatayo kuhusiana nax^\prime y^\prime mfumo:

x^2+12xy−4y^2=30

Suluhisho

Kwanza, tunapata\cot(2\theta).

x^2+12xy−4y^2=20\rightarrow A=1B=12, naC=−4

\begin{align*} \cot(2\theta) &= \dfrac{A−C}{B} \\ \cot(2\theta) &= \dfrac{1−(−4)}{12} \\ \cot(2\theta) &= \dfrac{5}{12} \end{align*}

Kwa sababu\cot(2\theta)=\dfrac{5}{12}, tunaweza kuteka pembetatu ya kumbukumbu kama katika Kielelezo\PageIndex{9}.

imageedit_22_9251267068.png

Kielelezo\PageIndex{9}

\cot(2\theta)=\dfrac{5}{12}=\dfrac{adjacent}{opposite}

Hivyo, hypotenuse ni

\begin{align*} 5^2+{12}^2&=h^2 \\[4pt] 25+144 &=h^2 \\[4pt] 169 &=h^2 \\[4pt] h&=13 \end{align*}

Kisha, tunapata\sin \theta na\cos \theta. Tutatumia utambulisho wa nusu ya angle.

\sin \theta=\sqrt{\dfrac{1−\cos(2\theta)}{2}}=\sqrt{\dfrac{1−\dfrac{5}{13}}{2}}=\sqrt{\dfrac{\dfrac{13}{13}−\dfrac{5}{13}}{2}}=\sqrt{\dfrac{8}{13}⋅\dfrac{1}{2}}=\dfrac{2}{\sqrt{13}}

\cos \theta=\sqrt{\dfrac{1+\cos(2\theta)}{2}}=\sqrt{\dfrac{1+\dfrac{5}{13}}{2}}=\sqrt{\dfrac{\dfrac{13}{13}+\dfrac{5}{13}}{2}}=\sqrt{\dfrac{18}{13}⋅\dfrac{1}{2}}=\dfrac{3}{\sqrt{13}}

Sasa tunapatax nay.

x=x^\prime \cos \theta−y^\prime \sin \theta

x=x^\prime \left(\dfrac{3}{\sqrt{13}}\right)−y^\prime \left(\dfrac{2}{\sqrt{13}}\right)

x=\dfrac{3x^\prime −2y^\prime }{\sqrt{13}}

na

y=x^\prime \sin \theta+y^\prime \cos \theta

y=x^\prime \left(\dfrac{2}{\sqrt{13}}\right)+y^\prime \left(\dfrac{3}{\sqrt{13}}\right)

y=\dfrac{2x^\prime +3y^\prime }{\sqrt{13}}

Sasa sisi badalax=\dfrac{3x^\prime −2y^\prime }{\sqrt{13}} nay=\dfrac{2x^\prime +3y^\prime }{\sqrt{13}} katikax^2+12xy−4y^2=30.

\begin{array}{rl} {\left(\dfrac{3x^\prime −2y^\prime }{\sqrt{13}}\right)}^2+12\left(\dfrac{3x^\prime −2y^\prime }{\sqrt{13}}\right)\left(\dfrac{2x^\prime +3y^\prime }{\sqrt{13}}\right)−4{\left(\dfrac{2x^\prime +3y^\prime }{\sqrt{13}}\right)}^2=30 \\ \left(\dfrac{1}{13}\right)[ {(3x^\prime −2y^\prime )}^2+12(3x^\prime −2y^\prime )(2x^\prime +3y^\prime )−4{(2x^\prime +3y^\prime )}^2 ]=30 & \text{Factor.} \\ \left(\dfrac{1}{13}\right)[ 9{x^\prime }^2−12x^\prime y^\prime +4{y^\prime }^2+12(6{x^\prime }^2+5x^\prime y^\prime −6{y^\prime }^2)−4(4{x^\prime }^2+12x^\prime y^\prime +9{y^\prime }^2) ]=30 & \text{Multiply.} \\ \left(\dfrac{1}{13}\right)[ 9{x^\prime }^2−12x^\prime y^\prime +4{y^\prime }^2+72{x^\prime }^2+60x^\prime y^\prime −72{y^\prime }^2−16{x^\prime }^2−48x^\prime y^\prime −36{y^\prime }^2 ]=30 & \text{Distribute.} \\ \left(\dfrac{1}{13}\right)[ 65{x^\prime }^2−104{y^\prime }^2 ]=30 & \text{Combine like terms.} \\ 65{x^\prime }^2−104{y^\prime }^2=390 & \text{Multiply.} \\ \dfrac{{x^\prime }^2}{6}−\dfrac{4{y^\prime }^2}{15}=1 & \text{Divide by 390.} \end{array}

Kielelezo\PageIndex{10} kinaonyesha grafu ya hyperbola\dfrac{{x^\prime }^2}{6}−\dfrac{4{y^\prime }^2}{15}=1

imageedit_26_7758236974.png

Kielelezo\PageIndex{10}

Kutambua Conics bila Axes zinazozunguka

Sasa tumekuja mduara kamili. Je, sisi kutambua aina ya conic ilivyoelezwa na equation? Ni nini kinachotokea wakati axes zimezungushwa? Kumbuka, fomu ya jumla ya conic ni

Ax^2+Bxy+Cy^2+Dx+Ey+F=0

Ikiwa tunatumia fomu za mzunguko kwa equation hii, tunapata fomu.

A′{x^\prime }^2+B′x^\prime y^\prime +C′{y^\prime }^2+D′x^\prime +E′y^\prime +F′=0

Inaweza kuonyeshwa kuwa

B^2−4AC={B′}^2−4A′C′

Maneno hayatofautiana baada ya mzunguko, kwa hiyo tunaita maneno yasiyofaa. WabaguziB^2−4AC, hauna maana na bado haubadilika baada ya mzunguko. Kwa sababu ubaguzi bado haubadilika, kuchunguza ubaguzi hutuwezesha kutambua sehemu ya conic.

JINSI YA: KUTUMIA WABAGUZI KUTAMBUA CONIC

Kama equation

Ax^2+Bxy+Cy^2+Dx+Ey+F=0

inabadilishwa na axes zinazozunguka kwenye equation

A′{x^\prime }^2+B′x^\prime y^\prime +C′{y^\prime }^2+D′x^\prime +E′y^\prime +F′=0

basiB^2−4AC={B′}^2−4A′C′

EquationAx^2+Bxy+Cy^2+Dx+Ey+F=0 ni duaradufu, parabola, au hyperbola, au kesi degenerate ya mojawapo ya haya. Kama kubagua,B^2−4AC, ni

  • <0, sehemu ya conic ni ellipse
  • =0, sehemu ya conic ni parabola
  • >0, sehemu ya conic ni hyperbola
Mfano\PageIndex{5}: Identifying the Conic without Rotating Axes

Tambua conic kwa kila moja ya yafuatayo bila axes zinazozunguka.

  1. 5x^2+2\sqrt{3}xy+2y^2−5=0
  2. 5x^2+2\sqrt{3}xy+12y^2−5=0

Suluhisho

hebu tuanze kwa kuamuaA,B, naC.

\underbrace{5}_{A}x^2+\underbrace{2\sqrt{3}}_{B}xy+\underbrace{2}_{C}y^2−5=0

Sasa, tunaona ubaguzi.

\begin{align*} B^2−4AC &= {(2\sqrt{3})}^2−4(5)(2) \\ &=4(3)−40 \\ &=12−40 \\ &=−28<0 \end{align*}

Kwa hiyo,5x^2+2\sqrt{3}xy+2y^2−5=0 inawakilisha duaradufu.

b Tena, hebu tuanze kwa kuamuaA,B, naC.

\underbrace{5}_{A}x^2+\underbrace{2\sqrt{3}}_{B}xy+\underbrace{12}_{C}y^2−5=0 \nonumber

Sasa, tunaona ubaguzi.

\begin{align*} B^2−4AC &= {(2\sqrt{3})}^2−4(5)(12) \\ &= 4(3)−240 \\ &= 12−240 \\ &=−228<0 \end{align*}

Kwa hiyo,5x^2+2\sqrt{3}xy+12y^2−5=0 inawakilisha duaradufu.

Zoezi\PageIndex{3}

Tambua conic kwa kila moja ya yafuatayo bila axes zinazozunguka.

  1. x^2−9xy+3y^2−12=0
  2. 10x^2−9xy+4y^2−4=0
Jibu

hyperbola

Jibu b

duaradufu

Mlinganyo muhimu

Fomu ya jumla ya usawa wa sehemu ya conic Ax^2+Bxy+Cy^2+Dx+Ey+F=0
Mzunguko wa sehemu ya conic

x=x^\prime \cos \theta−y^\prime \sin \theta

y=x^\prime \sin \theta+y^\prime \cos \theta

Angle ya mzunguko \theta, wapi\cot(2\theta)=\dfrac{A−C}{B}

Dhana muhimu

  • Maumbo manne ya msingi yanaweza kutokea kutokana na makutano ya ndege na jozi ya mbegu za mviringo za kulia zilizounganishwa mkia kwa mkia. Wao ni pamoja na duaradufu, mduara, hyperbola, na parabola.
  • Sehemu isiyo ya kawaida ya conic ina fomu ya jumlaAx^2+Bxy+Cy^2+Dx+Ey+F=0 ambapoA,B naC sio wote sifuri. Maadili yaA,B, naC kuamua aina ya conic. Angalia Mfano\PageIndex{1}.
  • Ulinganisho wa sehemu za conic naxy neno zimezungushwa kuhusu asili. Angalia Mfano\PageIndex{2}.
  • Fomu ya jumla inaweza kubadilishwa kuwa equation katika mfumox^\prime nay^\prime kuratibu bilax^\prime y^\prime muda. Angalia Mfano\PageIndex{3} na Mfano\PageIndex{4}.
  • Maneno yanaelezewa kama yasiyofaa ikiwa bado haibadilika baada ya kupokezana. Kwa sababu kubagua ni invariant, kuchunguza inatuwezesha kutambua sehemu conic. Angalia Mfano\PageIndex{5}.