6.3: Kuzidisha Polynomials
- Page ID
- 177837
Mwishoni mwa sehemu hii, utaweza:
- Kuzidisha polynomial na monomial
- Panua binomial kwa binomial
- Panua trinomial na binomial
Kabla ya kuanza, fanya jaribio hili la utayari.
- Kusambaza:\(2(x+3)\).
Kama amekosa tatizo hili, kupitia Zoezi 1.10.31. - Kuchanganya kama maneno:\(x^{2}+9x+7x+63\).
Kama amekosa tatizo hili, mapitio Zoezi 1.3.37.
Kuzidisha Polynomial na Monomial
Tumetumia Mali Distributive kurahisisha maneno kama\(2(x−3)\). Wewe kuzidisha maneno yote katika mabano\(3\),\(x\) na\(2\), na, kupata\(2x−6\). Kwa msamiati mpya wa sura hii, unaweza kusema ulikuwa unazidisha binomial\(x−3\), kwa monomial,\(2\).
Kuzidisha binomial kwa monomial si kitu kipya kwako! Hapa ni mfano:
Kuzidisha:\(4(x+3)\).
- Jibu
-
Kusambaza. \(4 \cdot x+4 \cdot 3\) Kurahisisha. \(4 x+12\)
Kuzidisha:\(5(x+7)\).
- Jibu
-
5x+35
Kuzidisha:\(3(y+13)\).
- Jibu
-
3y+39
Panua: y (y-2).
- Jibu
-
Kusambaza. \(y \cdot y-y \cdot 2\) Kurahisisha. \(y^{2}-2 y\)
Kuzidisha:\(x(x−7)\).
- Jibu
-
\(x^{2}-7 x\)
Kuzidisha:\(d(d−11)\).
- Jibu
-
\(d^{2}-11d\)
Kuzidisha:\(7x(2 x+y)\)
- Jibu
-
Kusambaza. Kurahisisha.
Kuzidisha:\(5x(x+4 y)\)
- Jibu
-
\(5 x^{2}+20 x y\)
Kuzidisha:\(2p(6 p+r)\)
- Jibu
-
\(12 p^{2}+2 p r\)
Kuzidisha:\(-2 y\left(4 y^{2}+3 y-5\right)\)
- Jibu
-
Kusambaza. Kurahisisha.
Kuzidisha:\(-3 y\left(5 y^{2}+8 y-7\right)\)
- Jibu
-
\(-15 y^{3}-24 y^{2}+21 y\)
Kuzidisha:\(4x^{2}\left(2 x^{2}-3 x+5\right)\)
- Jibu
-
\(8 x^{4}-24 x^{3}+20 x^{2}\)
Kuzidisha:\(2x^{3}\left(x^{2}-8 x+1\right)\)
- Jibu
-
Kusambaza. \(2 x^{3} \cdot x^{2}+\left(2 x^{3}\right) \cdot(-8 x)+\left(2 x^{3}\right) \cdot 1\) Kurahisisha. \(2 x^{5}-16 x^{4}+2 x^{3}\)
Kuzidisha: 4\(x\left(3 x^{2}-5 x+3\right)\)
- Jibu
-
\(12 x^{3}-20 x^{2}+12 x\)
Kuzidisha:\(-6 a^{3}\left(3 a^{2}-2 a+6\right)\)
- Jibu
-
\(-18 a^{5}+12 a^{4}-36 a^{3}\)
Kuzidisha:\((x+3) p\)
- Jibu
-
Monomial ni sababu ya pili. Kusambaza. \(x \cdot p+3 \cdot p\) Kurahisisha. \ (\ x p+3 p)
Kuzidisha:\((x+8) p\)
- Jibu
-
\(x p+8 p\)
Kuzidisha:\((a+4) p\)
- Jibu
-
\(a p+4 p\)
Kuzidisha Binomial na Binomial
Kama kuna njia tofauti za kuwakilisha kuzidisha kwa idadi, kuna mbinu kadhaa ambazo zinaweza kutumika kuzidisha mara binomial binomial. Tutaanza kwa kutumia Mali ya Usambazaji.
Kuzidisha Binomial kwa Binomial Kutumia Mali ya Usambazaji
Angalia Zoezi\(\PageIndex{16}\), ambapo tuliongeza binomial na monomial.
Maelekezo | Ufafanuzi |
---|---|
Kuanzia Maneno | |
Sisi kusambazwa\(p\) ili kupata: | |
Nini kama tuna\((x + 7)\) badala ya\(p\)? | |
Kusambaza\((x + 7)\). | |
Kusambaza tena. | \(x^{2}+7 x+3 x+21\) |
Kuchanganya kama maneno. | \(x^{2}+10 x+21\) |
Angalia kwamba kabla ya kuchanganya maneno kama hayo, ulikuwa na maneno manne. Umeongeza maneno mawili ya binomial ya kwanza kwa masharti mawili ya pili ya binomial - nne kuzidisha.
Kuzidisha:\((y+5)(y+8)\)
- Jibu
-
Kusambaza (y + 8). Kusambaza tena \(y^{2}+8 y+5 y+40\) Kuchanganya kama maneno. \ (\ y^ {2} +13 y+40)
Kuzidisha:\((x+8)(x+9)\)
- Jibu
-
\(x^{2}+17 x+72\)
Kuzidisha:\((5 x+9)(4 x+3)\)
- Jibu
-
\(20 x^{2}+51 x+27\)
Kuzidisha:\((2 y+5)(3 y+4)\)
- Jibu
-
Kusambaza (3 y + 4). Kusambaza tena \(6 y^{2}+8 y+15 y+20\) Kuchanganya kama maneno. \(6 y^{2}+23 y+20\)
Kuzidisha:\((3 b+5)(4 b+6)\)
- Jibu
-
\(12 b^{2}+38 b+30\)
Kuzidisha:\((a+10)(a+7)\)
- Jibu
-
\(a^{2}+17 a+70\)
Kuzidisha:\((4 y+3)(2 y-5)\)
- Jibu
-
Kusambaza. Kusambaza tena. \(8 y^{2}-20 y+6 y-15\) Kuchanganya kama maneno. \(8 y^{2}-14 y-15\)
Kuzidisha:\((5 y+2)(6 y-3)\)
- Jibu
-
\(30 y^{2}-3 y-6\)
Kuzidisha:\((3 c+4)(5 c-2)\)
- Jibu
-
\(15 c^{2}+14 c-8\)
Kuzidisha:\((x-2)(x-y)\)
- Jibu
-
Kusambaza. Kusambaza tena. \(x^{2}-x y-2 x+2 y\) Hakuna maneno kama hayo ya kuchanganya.
Kuzidisha:\((a+7)(a-b)\)
- Jibu
-
\(a^{2}-a b+7 a-7 b\)
Kuzidisha:\((x+5)(x-y)\)
- Jibu
-
\(x^{2}-x y+5 x-5 y\)
Panua Binomial kwa Binomial Kutumia Njia ya FOIL
Kumbuka kwamba unapozidisha binomial kwa binomial unapata maneno manne. Wakati mwingine unaweza kuchanganya kama maneno ya kupata trinomial, lakini wakati mwingine, kama katika Zoezi\(\PageIndex{28}\), hakuna maneno kama ya kuchanganya.
Hebu tuangalie mfano wa mwisho tena na uangalie hasa jinsi tulivyopata masharti manne.
\[\begin{array}{c}{(x-2)(x-y)} \\ {x^{2}-x y-2 x+2 y}\end{array} \nonumber\]
Je, muda wa kwanza\(x^{2}\), unatoka wapi?
Tunafupisha “Kwanza, Nje, Ndani, Mwisho” kama FOIL. Barua zinasimama kwa 'F kwanza, O uter, I ndani, L ast'. Neno FOIL ni rahisi kukumbuka na kuhakikisha tunapata bidhaa zote nne.
\[\begin{array}{c}{(x-2)(x-y)} \\ {x^{2}-x y-2 x+2 y} \\ {F \qquad O\qquad I\qquad L}\end{array}\]
Hebu tuangalie (x+3) (x+7).
Mali ya Kusambaza | JARIBOSI |
\(x^{2}+10 x+21\) |
Angalia jinsi maneno katika mstari wa tatu yanafaa muundo wa FOIL.
Sasa tutafanya mfano ambapo tunatumia muundo wa FOIL ili kuzidisha binomials mbili.
Panua kutumia njia ya FOIL:\((x+5)(x+9)\)
- Jibu
-
Panua kutumia njia ya FOIL:\((x+6)(x+8)\)
- Jibu
-
\(x^{2}+14 x+48\)
Panua kutumia njia ya FOIL:\((y+17)(y+3)\)
- Jibu
-
\(y^{2}+20 y+51\)
Sisi muhtasari hatua za njia ya FOIL hapa chini. Njia ya FOIL inatumika tu kwa kuzidisha binomials, sio polynomials nyingine!
Unapozidisha kwa njia ya FOIL, kuchora mistari itasaidia ubongo wako kuzingatia muundo na iwe rahisi kuomba.
Kuzidisha:\((y−7)(y+4)\).
- Jibu
Kuzidisha:\((x−7)(x+5)\).
- Jibu
-
\(x^{2}-2 x-35\)
Panua: (b-3) (b+6).
- Jibu
-
\(b^{2}+3 b-18\)
Kuzidisha:\((4x+3)(2x−5)\).
- Jibu
Kuzidisha:\((3x+7)(5x−2)\).
- Jibu
-
\(15 x^{2}+29 x-14\)
Kuzidisha:\((4y+5)(4y−10)\).
- Jibu
-
\(16 y^{2}-20 y-50\)
Bidhaa za mwisho katika mifano minne iliyopita zilikuwa za trinomials kwa sababu tunaweza kuchanganya maneno mawili ya kati. Hii si mara zote kesi.
Kuzidisha:\((3x−y)(2x−5)\).
- Jibu
-
\((3 x-y)(2 x-5)\) Kuzidisha Kwanza. Kuzidisha Nje. Kuzidisha Ndani. Kuzidisha Mwisho. Kuchanganya kama masharti - hakuna. \(6 x^{2}-15 x-2 x y+5 y\)
Panua: (10c-d) (c-6).
- Jibu
-
\(10 c^{2}-60 c-c d+6 d\)
Panua: (7x-y) (2x-5).
- Jibu
-
\(14 x^{2}-35 x-2 x y+10 y\)
Kuwa makini ya exponents katika mfano unaofuata.
Kuzidisha:\(\left(n^{2}+4\right)(n-1)\)
- Jibu
-
\(\left(n^{2}+4\right)(n-1)\) Kuzidisha Kwanza. Kuzidisha Nje. Kuzidisha Ndani. Kuzidisha Mwisho. Kuchanganya kama masharti - hakuna. \ (\ n^ {3} -n^ {2} +4 n-4)
Kuzidisha:\(\left(x^{2}+6\right)(x-8)\)
- Jibu
-
\(x^{3}-8 x^{2}+6 x-48\)
Kuzidisha:\(\left(y^{2}+7\right)(y-9)\)
- Jibu
-
\(y^{3}-9 y^{2}+7 y-63\)
Kuzidisha:\((3 p q+5)(6 p q-11)\)
- Jibu
-
\((3 p q+5)(6 p q-11)\) Kuzidisha Kwanza. Kuzidisha Nje. Kuzidisha Ndani. Kuzidisha Mwisho. Kuchanganya kama masharti - hakuna. \(18 p^{2} q^{2}-3 p q-55\)
Kuzidisha:\((2 a b+5)(4 a b-4)\)
- Jibu
-
\(8 a^{2} b^{2}+12 a b-20\)
Kuzidisha:\((2 x y+3)(4 x y-5)\)
- Jibu
-
\(8 x^{2} y^{2}+2 x y-15\)
Panua Binomial kwa Binomial Kutumia Njia ya Wima
Njia ya FOIL ni kawaida njia ya haraka zaidi ya kuzidisha binomials mbili, lakini inafanya kazi tu kwa binomials. Unaweza kutumia Mali Distributive kupata bidhaa ya polynomials yoyote mbili. Njia nyingine inayofanya kazi kwa polynomials zote ni Njia ya Wima. Ni sana kama njia unayotumia kuzidisha idadi nzima. Angalia kwa makini mfano huu wa kuzidisha namba mbili za tarakimu.
Sasa tutaweza kutumia njia hii hiyo ya kuzidisha binomials mbili.
Panua kutumia Njia ya Wima:\((3 y-1)(2 y-6)\)
- Jibu
-
Haijalishi ambayo binomial inakwenda juu.
\[\begin{array}{lll}{\text { Multiply } 3 y-1 \text { by }-6 \text { . }}&& \\ {\text { Multiply } 3 y-1 \text { by } 2 y \text { . }}& &\\ \\ &{\qquad\space3 y-1} & \\& {\dfrac{ \space\space\times 2 y-6}{\quad-18 y+6}} & \text{partial product} & \\ &
(click for details)& \text{partial product} & \\ \text{Add like terms.} &&\text{product} \end{array}\]Callstack: at (Kiswahili/Kitabu:_Elementary_Algebra_(OpenStax)/06:_Polynomials/6.03:_Kuzidisha_Polynomials), /content/body/div[4]/div[3]/div[1]/div/dl/dd/p[2]/span/span, line 1, column 3
Angalia bidhaa za sehemu ni sawa na maneno katika njia ya FOIL.
Panua kutumia Njia ya Wima:\((5 m-7)(3 m-6)\)
- Jibu
-
\(15 m^{2}-51 m+42\)
Panua kutumia Njia ya Wima:\((6 b-5)(7 b-3)\)
- Jibu
-
\(42 b^{2}-53 b+15\)
Sasa tumetumia mbinu tatu za kuzidisha binomials. Hakikisha kufanya mazoezi ya kila njia, na jaribu kuamua ni nani unayopendelea. Mbinu zimeorodheshwa hapa zote pamoja, ili kukusaidia kukumbuka.
Ili kuzidisha binomials, tumia:
- Mali ya Kusambaza
- Njia ya foil
- Njia ya wima
Kumbuka, FOIL inafanya kazi tu wakati wa kuzidisha binomials mbili.
Kuzidisha Trinomial na Binomial
Tumeongeza monomials na monomials, monomials na polynomials, na binomials na binomials. Sasa tuko tayari kuzidisha trinomial na binomial. Kumbuka, FOIL haifanyi kazi katika kesi hii, lakini tunaweza kutumia Mali ya Usambazaji au Njia ya Wima. Sisi kwanza kuangalia mfano kwa kutumia Mali Distributive.
Panua kutumia Mali ya Mgawanyo:\((b+3)\left(2 b^{2}-5 b+8\right)\)
- Jibu
-
Kusambaza. Kuzidisha. \(2 b^{3}-5 b^{2}+8 b+6 b^{2}-15 b+24\) Kuchanganya kama maneno. \(2 b^{3}+b^{2}-7 b+24\)
Panua kutumia Mali ya Mgawanyo:\((y-3)\left(y^{2}-5 y+2\right)\)
- Jibu
-
\(y^{3}-8 y^{2}+17 y-6\)
Panua kutumia Mali ya Mgawanyo:\((x+4)\left(2 x^{2}-3 x+5\right)\)
- Jibu
-
\(2 x^{3}+5 x^{2}-7 x+20\)
Sasa hebu tufanye kuzidisha sawa kwa kutumia Njia ya Wima.
Panua kutumia Njia ya Wima:\((b+3)\left(2 b^{2}-5 b+8\right)\)
- Jibu
-
Ni rahisi kuweka polynomial na maneno machache chini kwa sababu tunapata bidhaa chache za sehemu kwa njia hii.
Kuzidisha\((2b^2 − 5b + 8)\) kwa 3. Kuzidisha\((2b^2 − 5b + 8)\) kwa\(b\). \(2 b^{3}+b^{2}-7 b+24\) Ongeza kama maneno.
Panua kutumia Njia ya Wima:\((y-3)\left(y^{2}-5 y+2\right)\)
- Jibu
-
\(y^{3}-8 y^{2}+17 y-6\)
Panua kutumia Njia ya Wima:\((x+4)\left(2 x^{2}-3 x+5\right)\)
- Jibu
-
\(2 x^{3}+5 x^{2}-7 x+20\)
Sasa tumeona njia mbili ambazo unaweza kutumia kuzidisha trinomial na binomial. Baada ya kufanya mazoezi ya kila njia, pengine utapata unapendelea njia moja juu ya nyingine. Sisi orodha njia zote mbili zimeorodheshwa hapa, kwa ajili ya kumbukumbu rahisi.
Ili kuzidisha trinomial na binomial, tumia:
- Mali ya Kusambaza
- Njia ya wima
Fikia rasilimali hizi za mtandaoni kwa maelekezo ya ziada na mazoezi na kuzidisha polynomials:
- Kuzidisha watazamaji 1
- Kuzidisha watazamaji 2
- Kuzidisha watazamaji 3
Dhana muhimu
- Njia ya FOIL ya kuzidisha Binomials mbili —Ili kuzidisha binomials mbili:
- Panua maneno ya kwanza.
- Kuzidisha maneno ya nje.
- Panua maneno ya ndani.
- Kuzidisha maneno ya mwisho.
- Kuzidisha Binomials mbili —Ili kuzidisha binomials, tumia:
- Kuzidisha Trinomial na Binomial —Ili kuzidisha trinomial na binomial, tumia: