Skip to main content
Global

16.8E: Mazoezi ya Sehemu ya 16.8

  • Page ID
    178911
    • Edwin “Jed” Herman & Gilbert Strang
    • OpenStax
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Kwa mazoezi ya 1 - 9, tumia mfumo wa kompyuta ya algebraic (CAS) na theorem ya tofauti ili kutathmini uso muhimu\(\displaystyle \int_S \vecs F \cdot \vecs n \, ds\) kwa uchaguzi uliopewa\(\vecs F\) na uso wa mipaka\(S.\) Kwa kila uso uliofungwa, kudhani\(\vecs N\) ni kitengo cha nje cha vector ya kawaida.

    1. [T]\(\vecs F(x,y,z) = x\,\mathbf{\hat i} + y\,\mathbf{\hat j} + z\,\mathbf{\hat k}\);\(S\) ni uso wa mchemraba\(0 \leq x \leq 1, \, 0 \leq y \leq 1, \, 0 < z \leq 1\).

    2. [T]\(\vecs F(x,y,z) = (\cos yz) \,\mathbf{\hat i} + e^{xz}\,\mathbf{\hat j} + 3z^2 \,\mathbf{\hat k}\);\(S\) ni uso wa hemisphere\(z = \sqrt{4 - x^2 - y^2}\) pamoja na disk\(x^2 + y^2 \leq 4\) katika\(xy\) -ndege.

    Jibu
    \(\displaystyle \int_S \vecs F \cdot \vecs n \, ds = 75.3982\)

    3. [T]\(\vecs F(x,y,z) = (x^2 + y^2 - x^2)\,\mathbf{\hat i} + x^2 y\,\mathbf{\hat j} + 3z\,\mathbf{\hat k}; \)\(S\) ni uso wa nyuso tano za mchemraba kitengo\(0 \leq x \leq 1, \, 0 \leq y \leq 1, \, 0 < z \leq 1.\)

    4. [T]\(\vecs F(x,y,z) = x\,\mathbf{\hat i} + y\,\mathbf{\hat j} + z\,\mathbf{\hat k}; \)\(S\) ni uso wa paraboloid\(z = x^2 + y^2\) kwa\(0 \leq z \leq 9\).

    Jibu
    \(\displaystyle \int_S \vecs F \cdot \vecs n \, ds = 127.2345\)

    5. [T]\(\vecs F(x,y,z) = x^2\,\mathbf{\hat i} + y^2 \,\mathbf{\hat j} + z^2 \,\mathbf{\hat k}\);\(S\) ni uso wa nyanja\(x^2 + y^2 + z^2 = 4\).

    6. [T]\(\vecs F(x,y,z) = x\,\mathbf{\hat i} + y\,\mathbf{\hat j} + (z^2 - 1)\,\mathbf{\hat k}\);\(S\) ni uso wa imara imepakana\( x^2 + y^2 = 4\) na silinda na ndege\(z = 0\) na\(z = 1\).

    Jibu
    \(\displaystyle \int_S \vecs F \cdot \vecs n \, ds = 37.699\)

    7. [T]\(\vecs F(x,y,z) = x^2\,\mathbf{\hat i} + y^2 \,\mathbf{\hat j} + z^2 \,\mathbf{\hat k}\);\(S\) ni uso umefungwa juu\(\rho = 2\) na nyanja na chini na koni\(\varphi = \dfrac{\pi}{4}\) katika kuratibu spherical. (Fikiria\(S\) kama uso wa “koni ya ice cream.”)

    8. [T]\(\vecs F(x,y,z) = x^3\,\mathbf{\hat i} + y^3 \,\mathbf{\hat j} + 3a^2z \,\mathbf{\hat k} \, (constant \, a > 0)\);\(S\) ni uso imepakana na silinda\(x^2 + y^2 = a^2\) na ndege\(z = 0\) na\(z = 1\).

    Jibu
    \(\displaystyle \int_S \vecs F \cdot \vecs n \, ds = \dfrac{9\pi a^4}{2}\)

    9. [T] Uso muhimu\(\displaystyle \iint_S \vecs F \cdot dS\), ambapo\(S\) ni imara imepakana na paraboloid\(z = x^2 + y^2\) na ndege\(z = 4\), na\(\vecs F(x,y,z) = (x + y^2z^2)\,\mathbf{\hat i} + (y + z^2x^2)\,\mathbf{\hat j} + (z + x^2y^2) \,\mathbf{\hat k}\)

    10. Tumia theorem ya tofauti ili kuhesabu uso muhimu\(\displaystyle \iint_S \vecs F \cdot dS\), wapi\(\vecs F(x,y,z) = (e^{y^2} \,\mathbf{\hat i} + (y + \sin (z^2))\,\mathbf{\hat j} + (z - 1)\,\mathbf{\hat k}\) na\(S\) ni hemphere ya juu\(x^2 + y^2 + z^2 = 1, \, z \geq 0\), inaelekezwa juu.

    Jibu
    \(\displaystyle \iint_S \vecs F \cdot dS = \dfrac{\pi}{3}\)

    11. Matumizi theorem tofauti kwa mahesabu ya uso muhimu\(\displaystyle \iint_S \vecs F \cdot dS\), ambapo\(\vecs F(x,y,z) = x^4\,\mathbf{\hat i} - x^3z^2\,\mathbf{\hat j} + 4xy^2z\,\mathbf{\hat k}\) na\(S\) ni uso imepakana na silinda\(x^2 + y^2 = 1\) na ndege\(z = x + 2\) na\(z = 0\).

    12. Tumia theorem ya tofauti ili kuhesabu uso muhimu\(\displaystyle \iint_S \vecs F \cdot dS\), wakati\(\vecs F(x,y,z) = x^2z^3 \,\mathbf{\hat i} + 2xyz^3\,\mathbf{\hat j} + xz^4 \,\mathbf{\hat k}\) na\(S\) ni uso wa sanduku na vipeo\((\pm 1, \, \pm 2, \, \pm 3)\).

    Jibu
    \(\displaystyle \iint_S \vecs F \cdot dS = 0\)

    13. Matumizi theorem tofauti kwa mahesabu ya uso muhimu\(\displaystyle \iint_S \vecs F \cdot dS\), wakati\(\vecs F(x,y,z) = z \, \tan^{-1} (y^2)\,\mathbf{\hat i} + z^3 \ln(x^2 + 1) \,\mathbf{\hat j} + z\,\mathbf{\hat k}\) na\(S\) ni sehemu ya paraboloid\(x^2 + y^2 + z = 2\) kwamba uongo juu ya ndege\(z = 1\) na ni oriented zaidi.

    14. [T] Matumizi CAS na theorem tofauti kwa mahesabu ya flux\(\displaystyle \iint_S \vecs F \cdot dS\), ambapo\(\vecs F(x,y,z) = (x^3 + y^3)\,\mathbf{\hat i} + (y^3 + z^3)\,\mathbf{\hat j} + (z^3 + x^3)\,\mathbf{\hat k} \) na\(S\) ni nyanja na kituo\((0, 0)\) na Radius\(2.\)

    Jibu
    \(\displaystyle \iint_S \vecs F \cdot dS = 241.2743\)

    15. Matumizi theorem tofauti kukokotoa thamani ya flux muhimu\(\displaystyle \iint_S \vecs F \cdot dS\), ambapo\(\vecs F(x,y,z) = (y^3 + 3x)\,\mathbf{\hat i} + (xz + y)\,\mathbf{\hat j} + \left(z + x^4 \cos (x^2y)\right)\,\mathbf{\hat k}\) na\(S\) ni eneo la mkoa imepakana na\(x^2 + y^2 = 1, \, x \geq 0, \, y \geq 0\), na\(0 \leq z \leq 1\).

    0, y>0, and z>0. A quarter of a cylinder is drawn with center on the z axis. The arrows have positive x, y, and z components; they point away from the origin." data-type="media">Shamba la vector katika vipimo vitatu, kwa kuzingatia eneo hilo na x 0, y> 0, na z> 0. Robo ya silinda hutolewa na kituo cha mhimili z. Mishale ina vipengele vyema vya x, y, na z; huelekeza mbali na asili." src="https://math.libretexts.org/@api/dek...16_08_202.jpeg">

    16. Matumizi theorem tofauti kukokotoa flux muhimu\(\displaystyle \iint_S \vecs F \cdot dS\), where \(\vecs F(x,y,z) = y\,\mathbf{\hat j} - z\,\mathbf{\hat k}\) and \(S\) consists of the union of paraboloid \(y = x^2 + z^2, \, 0 \leq y \leq 1\), and disk \(x^2 + z^2 \leq 1, \, y = 1\), oriented outward. What is the flux through just the paraboloid?

    Answer
    \(\displaystyle \iint_S \vecs F \cdot dS = -\pi\)

    17. Use the divergence theorem to compute flux integral \(\displaystyle \iint_S \vecs F \cdot dS\), where \(\vecs F(x,y,z) = x\,\mathbf{\hat i} + y\,\mathbf{\hat j} + z^4 \,\mathbf{\hat k}\) and \(S\) is a part of cone \(z = \sqrt{x^2 + y^2}\) beneath top plane \(z = 1\) oriented downward.

    18. Use the divergence theorem to calculate surface integral \(\displaystyle \iint_S \vecs F \cdot dS\) for \(\vecs F(x,y,z) = x^4\,\mathbf{\hat i} - x^3z^2\,\mathbf{\hat j} + 4xy^2 z\,\mathbf{\hat k}\), where \(S\) is the surface bounded by cylinder \(x^2 + y^2 = 1\) and planes \(z = x + 2\) and \(z = 0\).

    Answer
    \(\displaystyle \iint_S \vecs F \cdot dS = \dfrac{2\pi}{3}\)

    19. Consider \(\vecs F(x,y,z) = x^2\,\mathbf{\hat i} + xy\,\mathbf{\hat j} + (z + 1)\,\mathbf{\hat k}\). Let \(E\) be the solid enclosed by paraboloid \(z = 4 - x^2 - y^2\) and plane \(z = 0\) with normal vectors pointing outside \(E.\) Compute flux \(\vecs F\) across the boundary of \(E\) using the divergence theorem.

    In exercises 20 - 23, use a CAS along with the divergence theorem to compute the net outward flux for the fields across the given surfaces \(S.\)

    20. [T] \(\vecs F = \langle x,\, -2y, \, 3z \rangle; \) \(S\) is sphere \(\{(x,y,z) : x^2 + y^2 + z^2 = 6 \}\).

    Answer
    \(15\sqrt{6}\pi\)

    21. [T] \(\vecs F = \langle x, \, 2y, \, z \rangle\); \(S\) is the boundary of the tetrahedron in the first octant formed by plane \(x + y + z = 1\).

    22. [T] \(\vecs F = \langle y - 2x, \, x^3 - y, \, y^2 - z \rangle\); \(S\) is sphere \(\{(x,y,z) \,:\, x^2 + y^2 + z^2 = 4\}.\)

    Answer
    \(-\dfrac{128}{3} \pi\)

    23. [T] \(\vecs F = \langle x,y,z \rangle\); \(S\) is the surface of paraboloid \(z = 4 - x^2 - y^2\), for \(z \geq 0\), plus its base in the \(xy\)-plane.

    For exercises 24 - 26, use a CAS and the divergence theorem to compute the net outward flux for the vector fields across the boundary of the given regions \(D.\)

    24. [T] \(\vecs F = \langle z - x, \, x - y, \, 2y - z \rangle\); \(D\) is the region between spheres of radius 2 and 4 centered at the origin.

    Answer
    \(-703.7168\)

    25. [T] \(\vecs F = \dfrac{\vecs r}{\|\vecs r\|} = \dfrac{\langle x,y,z\rangle}{\sqrt{x^2+y^2+z^2}}\); \(D\) is the region between spheres of radius 1 and 2 centered at the origin.

    26. [T] \(\vecs F = \langle x^2, \, -y^2, \, z^2 \rangle\); \(D\) is the region in the first octant between planes \(z = 4 - x - y\) and \(z = 2 - x - y\).

    Answer
    \(20\)

    27. Let \(\vecs F(x,y,z) = 2x\,\mathbf{\hat i} - 3xy\,\mathbf{\hat j} + xz^2\,\mathbf{\hat k}\). Use the divergence theorem to calculate \(\displaystyle \iint_S \vecs F \cdot dS\), where \(S\) is the surface of the cube with corners at \((0,0,0), \, (1,0,0), \, (0,1,0), \, (1,1,0), \, (0,0,1), \, (1,0,1), \, (0,1,1)\), and \((1,1,1)\), oriented outward.

    28. Use the divergence theorem to find the outward flux of field \(\vecs F(x,y,z) = (x^3 - 3y)\,\mathbf{\hat i} + (2yz + 1)\,\mathbf{\hat j} + xyz\,\mathbf{\hat k}\) through the cube bounded by planes \(x = \pm 1, \, y = \pm 1, \) and \(z = \pm 1\).

    Answer
    \(\displaystyle \iint_S \vecs F \cdot dS = 8\)

    29. Let \(\vecs F(x,y,z) = 2x\,\mathbf{\hat i} - 3y\,\mathbf{\hat j} + 5z\,\mathbf{\hat k}\) and let \(S\) be hemisphere \(z = \sqrt{9 - x^2 - y^2}\) together with disk \(x^2 + y^2 \leq 9\) in the \(xy\)-plane. Use the divergence theorem.

    30. Evaluate \(\displaystyle \iint_S \vecs F \cdot \vecs n \, dS\), where \(\vecs F(x,y,z) = x^2 \,\mathbf{\hat i} + xy\,\mathbf{\hat j} + x^3y^3\,\mathbf{\hat k}\) and \(S\) is the surface consisting of all faces except the tetrahedron bounded by plane \(x + y + z = 1\) and the coordinate planes, with outward unit normal vector \(\vecs N.\)

    A vector field in three dimensions, with arrows becoming larger the further away from the origin they are, especially in their x components. S is the surface consisting of all faces except the tetrahedron bounded by the plane x + y + z = 1. As such, a portion of the given plane, the (x, y) plane, the (x, z) plane, and the (y, z) plane are shown. The arrows point towards the origin for negative x components, away from the origin for positive x components, down for positive x and negative y components, as well as positive y and negative x components, and for positive x and y components, as well as negative x and negative y components.

    Jibu
    \(\displaystyle \iint_S \vecs F \cdot \vecs n \, dS = \dfrac{1}{8}\)

    31. Kupata wavu nje flux ya shamba\(\vecs F = \langle bz - cy, \, cx - az, \, ay - bx \rangle\) katika uso wowote laini kufungwa katika\(R^3\) wapi\(a, \, b,\) na\(c\) ni constants.

    32. Tumia theorem ya tofauti ili kutathmini\(\displaystyle \iint_S ||\vecs R||\vecs R \cdot \vecs n \, ds,\) wapi\(\vecs R(x,y,z) = x\,\mathbf{\hat i} + y\,\mathbf{\hat j} + z\,\mathbf{\hat k}\) na\(S\) ni nyanja\(x^2 + y^2 + z^2 = a^2\), na mara kwa mara\(a > 0\).

    Jibu
    \(\displaystyle \iint_S ||\vecs R||\vecs R \cdot \vecs n \, ds = 4\pi a^4\)

    33. Matumizi theorem tofauti kutathmini\(\displaystyle \iint_S \vecs F \cdot dS,\) wapi\(\vecs F(x,y,z) = y^2 z\,\mathbf{\hat i} + y^3\,\mathbf{\hat j} + xz\,\mathbf{\hat k}\) na\(S\) ni mipaka ya mchemraba inavyoelezwa na\(-1 \leq x \leq 1, \, -1 \leq y \leq 1\), na\(0 \leq z \leq 2\).

    34. Hebu\(R\) kuwa kanda inavyoelezwa na\(x^2 + y^2 + z^2 \leq 1\). Tumia theorem ya tofauti ili kupata\(\displaystyle \iiint_R z^2 \, dV.\)

    Jibu
    \(\displaystyle \iiint_R z^2 dV = \dfrac{4\pi}{15}\)

    35. Hebu\(E\) kuwa imara imepakana na\(xy\) -plane na paraboloid\(z = 4 - x^2 - y^2\) hivyo kwamba\(S\) ni uso wa kipande paraboloid pamoja na disk katika\(xy\) -plane ambayo huunda chini yake. Ikiwa\(\vecs F(x,y,z) = (xz \, \sin(yz) + x^3) \,\mathbf{\hat i} + \cos (yz) \,\mathbf{\hat j} + (3zy^2 - e^{x^2+y^2})\,\mathbf{\hat k}\), tafuta\(\displaystyle \iint_S \vecs F \cdot dS\) kutumia theorem ya tofauti.

    shamba vector katika vipimo tatu na yote ya mishale akizungumzia chini. Wanaonekana kufuata njia ya paraboloidi inayotolewa kufunguliwa chini na kipeo kwenye asili. S ni uso wa paraboloid hii na diski katika ndege (x, y) inayounda chini yake.

    36. Hebu

    Template:ContribOpenStaxCalc