Skip to main content
Global

14.2E: Mazoezi ya Sehemu ya 14.2

  • Page ID
    178677
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    1) Matumizi ya sheria kikomo kwa ajili ya kazi ya vigezo mbili kutathmini kila kikomo chini, kutokana\(\displaystyle \lim_{(x,y)→(a,b)}f(x,y) = 5\) na kwamba na\(\displaystyle \lim_{(x,y)→(a,b)}g(x,y) = 2\).

    1. \(\displaystyle \lim_{(x,y)→(a,b)}\left[f(x,y) + g(x,y)\right]\)
    2. \(\displaystyle \lim_{(x,y)→(a,b)}\left[f(x,y) g(x,y)\right]\)
    3. \(\displaystyle \lim_{(x,y)→(a,b)}\left[ \dfrac{7f(x,y)}{g(x,y)}\right]\)
    4. \(\displaystyle \lim_{(x,y)→(a,b)}\left[\dfrac{2f(x,y) - 4g(x,y)}{f(x,y) - g(x,y)}\right]\)
    Jibu
    1. \(\displaystyle \lim_{(x,y)→(a,b)}\left[f(x,y) + g(x,y)\right] = \displaystyle \lim_{(x,y)→(a,b)}f(x,y) + \displaystyle \lim_{(x,y)→(a,b)}g(x,y)= 5 + 2 = 7\)
    2. \(\displaystyle \lim_{(x,y)→(a,b)}\left[f(x,y) g(x,y)\right] =\left(\displaystyle \lim_{(x,y)→(a,b)}f(x,y)\right) \left(\displaystyle \lim_{(x,y)→(a,b)}g(x,y)\right) = 5(2) = 10\)
    3. \(\displaystyle \lim_{(x,y)→(a,b)}\left[ \dfrac{7f(x,y)}{g(x,y)}\right] = \frac{7\left(\displaystyle \lim_{(x,y)→(a,b)}f(x,y)\right)}{\displaystyle \lim_{(x,y)→(a,b)}g(x,y)}=\frac{7(5)}{2} = 17.5\)
    4. \(\displaystyle \lim_{(x,y)→(a,b)}\left[\dfrac{2f(x,y) - 4g(x,y)}{f(x,y) - g(x,y)}\right] = \frac{2\left(\displaystyle \lim_{(x,y)→(a,b)}f(x,y)\right) - 4 \left(\displaystyle \lim_{(x,y)→(a,b)}g(x,y)\right)}{\displaystyle \lim_{(x,y)→(a,b)}f(x,y) - \displaystyle \lim_{(x,y)→(a,b)}g(x,y)}= \frac{2(5) - 4(2)}{5 - 2} = \frac{2}{3}\)

    Katika mazoezi 2 - 4, pata kikomo cha kazi.

    2)\(\displaystyle \lim_{(x,y)→(1,2)}x\)

    3)\(\displaystyle \lim_{(x,y)→(1,2)}\frac{5x^2y}{x^2+y^2}\)

    Jibu
    \(\displaystyle \lim_{(x,y)→(1,2)}\frac{5x^2y}{x^2+y^2} = 2\)

    4) Onyesha kwamba kikomo\(\displaystyle \lim_{(x,y)→(0,0)}\frac{5x^2y}{x^2+y^2}\) kipo na ni sawa kwenye njia:\(y\) -axis na\(x\) -axis, na kando\( y=x\).

    Katika mazoezi ya 5 - 19, tathmini mipaka katika maadili yaliyoonyeshwa ya\(x\) na\(y\). Ikiwa kikomo haipo, sema hili na ueleze kwa nini kikomo haipo.

    5)\(\displaystyle \lim_{(x,y)→(0,0)}\frac{4x^2+10y^2+4}{4x^2−10y^2+6}\)

    Jibu
    \(\displaystyle \lim_{(x,y)→(0,0)}\frac{4x^2+10y^2+4}{4x^2−10y^2+6} = \frac{2}{3} \)

    6)\(\displaystyle \lim_{(x,y)→(11,13)}\sqrt{\frac{1}{xy}}\)

    7)\(\displaystyle \lim_{(x,y)→(0,1)}\frac{y^2\sin x}{x}\)

    Jibu
    \(\displaystyle \lim_{(x,y)→(0,1)}\frac{y^2\sin x}{x} = 1\)

    8)\(\displaystyle \lim_{(x,y)→(0,0)}\sin(\frac{x^8+y^7}{x−y+10})\)

    9)\(\displaystyle \lim_{(x,y)→(π/4,1)}\frac{y\tan x}{y+1}\)

    Jibu
    \(\displaystyle \lim_{(x,y)→(π/4,1)}\frac{y\tan x}{y+1}=\frac{1}{2}\)

    10)\(\displaystyle \lim_{(x,y)→(0,π/4)}\frac{\sec x+2}{3x−\tan y}\)

    11)\(\displaystyle \lim_{(x,y)→(2,5)}(\frac{1}{x}−\frac{5}{y})\)

    Jibu
    \(\displaystyle \lim_{(x,y)→(2,5)}(\frac{1}{x}−\frac{5}{y}) = −\frac{1}{2}\)

    12)\(\displaystyle \lim_{(x,y)→(4,4)}x\ln y\)

    13)\(\displaystyle \lim_{(x,y)→(4,4)}e^{−x^2−y^2}\)

    Jibu
    \(\displaystyle \lim_{(x,y)→(4,4)}e^{−x^2−y^2} = e^{−32}\)

    14)\(\displaystyle \lim_{(x,y)→(0,0)}\sqrt{9−x^2−y^2}\)

    15)\(\displaystyle \lim_{(x,y)→(1,2)}(x^2y^3−x^3y^2+3x+2y)\)

    Jibu
    \(\displaystyle \lim_{(x,y)→(1,2)}(x^2y^3−x^3y^2+3x+2y) = 11\)

    16)\(\displaystyle \lim_{(x,y)→(π,π)}x\sin(\frac{x+y}{4})\)

    17)\(\displaystyle \lim_{(x,y)→(0,0)}\frac{xy+1}{x^2+y^2+1}\)

    Jibu
    \(\displaystyle \lim_{(x,y)→(0,0)}\frac{xy+1}{x^2+y^2+1} = 1\)

    18)\(\displaystyle \lim_{(x,y)→(0,0)}\frac{x^2+y^2}{\sqrt{x^2+y^2+1}−1}\)

    19)\(\displaystyle \lim_{(x,y)→(0,0)}\ln(x^2+y^2)\)

    Jibu
    Kikomo haipo kwa sababu wakati\(x\) na\(y\) wote wawili wanakaribia sifuri, kazi inakaribia\( \ln 0\), ambayo haijulikani (inakaribia infinity hasi).

    Katika mazoezi 20 - 21, kukamilisha taarifa.

    20) Hatua\( (x_0,y_0)\) katika kanda ya ndege\( R\) ni hatua ya ndani ya\(R\) kama _________________.

    21) Hatua\( (x_0,y_0)\) katika kanda ya ndege\(R\) inaitwa hatua ya mipaka ya\(R\) kama ___________.

    Jibu
    Kila disk wazi katikati katika\( (x_0,y_0)\) ina pointi ndani\( R\) na nje\( R\).

    Katika mazoezi 22 - 25, tumia mbinu za algebraic kutathmini kikomo.

    22)\(\displaystyle \lim_{(x,y)→(2,1)}\frac{x−y−1}{\sqrt{x−y}−1}\)

    23)\(\displaystyle \lim_{(x,y)→(0,0)}\frac{x^4−4y^4}{x^2+2y^2}\)

    Jibu
    \(\displaystyle \lim_{(x,y)→(0,0)}\frac{x^4−4y^4}{x^2+2y^2} = 0\)

    24)\(\displaystyle \lim_{(x,y)→(0,0)}\frac{x^3−y^3}{x−y}\)

    25)\(\displaystyle \lim_{(x,y)→(0,0)}\frac{x^2−xy}{\sqrt{x}−\sqrt{y}}\)

    Jibu
    \(\displaystyle \lim_{(x,y)→(0,0)}\frac{x^2−xy}{\sqrt{x}−\sqrt{y}} = 0\)

    Katika mazoezi 26 - 27, tathmini mipaka ya kazi za vigezo vitatu.

    26)\(\displaystyle \lim_{(x,y,z)→(1,2,3)}\frac{xz^2−y^2z}{xyz−1}\)

    27)\(\displaystyle \lim_{(x,y,z)→(0,0,0)}\frac{x^2−y^2−z^2}{x^2+y^2−z^2}\)

    Jibu
    Kikomo haipo.

    Katika mazoezi 28 - 31, tathmini kikomo cha kazi kwa kuamua thamani kazi inakaribia kwenye njia zilizoonyeshwa. Ikiwa kikomo haipo, eleza kwa nini sio.

    28)\(\displaystyle \lim_{(x,y)→(0,0)}\frac{xy+y^3}{x^2+y^2}\)

    a Pamoja na\(x\) -axis\( (y=0)\)

    b Pamoja na\(y\) -axis\( (x=0)\)

    c. njiani\(y=2x\)

    29) Tathmini\(\displaystyle \lim_{(x,y)→(0,0)}\frac{xy+y^3}{x^2+y^2}\) kutumia matokeo ya tatizo la awali.

    Jibu
    Kikomo haipo. Kazi inakaribia maadili mawili tofauti kwa njia tofauti.

    30)\(\displaystyle \lim_{(x,y)→(0,0)}\frac{x^2y}{x^4+y^2}\)

    a Pamoja na\(x\) -axis\( (y=0)\)

    b Pamoja na\(y\) -axis\( (x=0)\)

    c. njiani\(y=x^2\)

    31) Tathmini\(\displaystyle \lim_{(x,y)→(0,0)}\frac{x^2y}{x^4+y^2}\) kutumia matokeo ya tatizo la awali.

    Jibu
    Kikomo haipo kwa sababu kazi inakaribia maadili mawili tofauti kwenye njia.

    Katika mazoezi 32 - 35, jadili uendelezaji wa kila kazi. Pata eneo kubwa zaidi katika\(xy\) -ndege ambayo kila kazi inaendelea.

    32)\( f(x,y)=\sin(xy)\)

    33)\( f(x,y)=\ln(x+y)\)

    Jibu
    Kazi\( f\) inaendelea katika kanda\( y>−x.\)

    34)\( f(x,y)=e^{3xy}\)

    35)\( f(x,y)=\dfrac{1}{xy}\)

    Jibu
    Kazi\(f\) inaendelea wakati wote katika\(xy\) -ndege isipokuwa kwa pointi kwenye\(x\) - na\(y\) -axes.

    Katika mazoezi 36 - 38, tambua kanda ambayo kazi inaendelea. Eleza jibu lako.

    36)\( f(x,y)=\dfrac{x^2y}{x^2+y^2}\)

    37)\( f(x,y)=\)\( \begin{cases}\dfrac{x^2y}{x^2+y^2} & if(x,y)≠(0,0)\\0 & if(x,y)=(0,0)\end{cases}\)

    Kidokezo:
    Onyesha kwamba kazi inakaribia maadili tofauti pamoja na njia mbili tofauti.
    Jibu
    kazi ni kuendelea katika\( (0,0)\) tangu kikomo ya kazi katika\( (0,0)\) ni\( 0\), thamani sawa ya\( f(0,0).\)

    38)\( f(x,y)=\dfrac{\sin(x^2+y^2)}{x^2+y^2}\)

    39) Kuamua kama\( g(x,y)=\dfrac{x^2−y^2}{x^2+y^2}\) ni kuendelea katika\( (0,0)\).

    Jibu
    kazi ni\( (0,0).\) discontinuous katika kikomo katika\( (0,0)\) inashindwa kuwepo na\( g(0,0)\) haipo.

    40) Unda njama kwa kutumia programu ya graphing ili kuamua ambapo kikomo haipo. Kuamua eneo la ndege ya kuratibu ambayo\( f(x,y)=\dfrac{1}{x^2−y}\) inaendelea.

    41) Kuamua eneo la\(xy\) ndege ambayo kazi ya composite\( g(x,y)=\arctan(\frac{xy^2}{x+y})\) inaendelea. Tumia teknolojia ili kuunga mkono hitimisho lako.

    Jibu
    Tangu kazi\( \arctan x\) ni kuendelea juu\( (−∞,∞), g(x,y)=\arctan(\frac{xy^2}{x+y})\) ya kuendelea ambapo\( z=\dfrac{xy^2}{x+y}\) ni kuendelea. kazi ya ndani\( z\) ni kuendelea juu ya pointi zote za\(xy\) -ndege isipokuwa pale\( y=−x.\) Hivyo,\( g(x,y)=\arctan(\frac{xy^2}{x+y})\) ni kuendelea juu ya pointi zote za kuratibu ndege ila katika maeneo ambayo\( y=−x.\)

    42) Kuamua eneo la\(xy\) ndege ambalo\( f(x,y)=\ln(x^2+y^2−1)\) linaendelea. Tumia teknolojia ili kuunga mkono hitimisho lako. (Kidokezo: Chagua maadili mbalimbali\( x\) na kwa\( y\) makini!)

    43) Ni pointi gani katika nafasi\( g(x,y,z)=x^2+y^2−2z^2\) inayoendelea?

    Jibu
    All pointi\( P(x,y,z)\) katika nafasi

    44) Ni pointi gani katika nafasi\( g(x,y,z)=\dfrac{1}{x^2+z^2−1}\) inayoendelea?

    45) Onyesha kwamba\(\displaystyle \lim_{(x,y)→(0,0)}\frac{1}{x^2+y^2}\) haipo\( (0,0)\) kwa kupanga mipangilio ya kazi.

    Jibu

    Grafu huongezeka bila kufungwa kama\( x\) na njia\( y\) zote mbili zero.

    Grafu ya uso ambapo z-kuratibu huongezeka bila kufungwa kama hatua ya pembejeo (x, y) inakaribia asili.

    46) [T] Tathmini\(\displaystyle \lim_{(x,y)→(0,0)}\frac{−xy^2}{x^2+y^4}\) kwa kupanga njama kazi kwa kutumia CAS. Kuamua analytically kikomo kando ya njia\( x=y^2.\)

    47) [T]

    a Matumizi CAS kuteka contour ramani ya\( z=\sqrt{9−x^2−y^2}\).

    b Jina la sura ya kijiometri ya curves ngazi ni nini?

    c Kutoa equation ya jumla ya curves ngazi.

    d. ni thamani ya juu ya\( z\) nini?

    e Ni uwanja gani wa kazi?

    f Ni aina gani ya kazi?

    Jibu

    a.

    Ramani ya mpangilio wa kazi z=sqrt {9,1x^2,1y ^2}

    b. curves ngazi ni duru unaozingatia katika\( (0,0)\) na Radius\( 9−c\).
    c.\( x^2+y^2=9−c\)
    d.\( z=3\)
    e.\( \{(x,y)∈R^2∣x^2+y^2≤9\}\)
    f.\( \{z|0≤z≤3\}\)

    48) Kweli au Uongo: Ikiwa\(\displaystyle \lim_{(x,y)→(0,0)}f(x)\) tunatathmini njia kadhaa na kila wakati kikomo ni\( 1\), tunaweza kuhitimisha kwamba\(\displaystyle \lim_{(x,y)→(0,0)}f(x)=1.\)

    49) Tumia kuratibu za polar kupata\(\displaystyle \lim_{(x,y)→(0,0)}\frac{\sin\sqrt{x^2+y^2}}{\sqrt{x^2+y^2}}.\) Unaweza pia kupata kikomo kwa kutumia utawala wa L'Hôpital.

    Jibu
    \(\displaystyle \lim_{(x,y)→(0,0)}\frac{\sin\sqrt{x^2+y^2}}{\sqrt{x^2+y^2}} = 1\)

    50) Tumia viwianishi vya polar kupata\(\displaystyle \lim_{(x,y)→(0,0)}\cos(x^2+y^2).\)

    51) Jadili mwendelezo wa\( f(g(x,y))\) wapi\( f(t)=1/t\) na\( g(x,y)=2x−5y.\)

    Jibu
    \( f(g(x,y))\)ni kuendelea katika pointi zote\( (x,y)\) ambazo si kwenye mstari\( 2x−5y=0.\)

    52) Kupewa\( f(x,y)=x^2−4y,\) kupata\(\displaystyle \lim_{h→0}\frac{f(x+h,y)−f(x,y)}{h}.\)

    53) Kupewa\( f(x,y)=x^2−4y,\) kupata\(\displaystyle \lim_{h→0}\frac{f(1+h,y)−f(1,y)}{h}\).

    Jibu
    \( \displaystyle \lim_{h→0}\frac{f(1+h,y)−f(1,y)}{h} = 2\)

    Wachangiaji