Skip to main content
Global

9.6: Uwiano na Mizizi ya Mizizi

  • Page ID
    178887
    • Edwin “Jed” Herman & Gilbert Strang
    • OpenStax
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Malengo ya kujifunza
    • Tumia mtihani wa uwiano ili ueleze muunganiko kamili wa mfululizo.
    • Tumia mtihani wa mizizi ili ueleze muunganiko kamili wa mfululizo.
    • Eleza mkakati wa kupima muunganiko wa mfululizo uliopewa.

    Katika sehemu hii, tunathibitisha vipimo vya mwisho vya mfululizo wa mfululizo: mtihani wa uwiano na mtihani wa mizizi. Vipimo hivi ni nzuri sana kwa sababu hazihitaji sisi kupata mfululizo kulinganishwa. Mtihani wa uwiano utakuwa muhimu hasa katika majadiliano ya mfululizo wa nguvu katika sura inayofuata. Katika sura hii, tumeona kwamba hakuna moja muunganiko mtihani kazi kwa mfululizo wote. Kwa hiyo, mwishoni mwa sehemu hii sisi kujadili mkakati wa kuchagua ambayo muunganiko mtihani wa kutumia kwa mfululizo fulani.

    Mtihani wa uwiano

    Fikiria mfululizo\(\displaystyle \sum_{n=1}^∞a_n\). Kutokana na majadiliano yetu ya awali na mifano, tunajua kwamba\(\displaystyle \lim_{n→∞}a_n=0\) sio hali ya kutosha kwa mfululizo kuungana. Sio tu tunahitaji\( a_n→0\), lakini tunahitaji\( a_n→0\) haraka kutosha. Kwa mfano, fikiria mfululizo\(\displaystyle \sum_{n=1}^∞\frac{1}{n}\) na mfululizo\(\displaystyle \sum_{n=1}^∞\frac{1}{n^2}\). Tunajua kwamba\( \frac{1}{n}→0\) na\( \frac{1}{n^2}→0\). Hata hivyo, mfululizo tu\(\displaystyle \sum_{n=1}^∞ \frac{1}{n^2}\) hujiunga. mfululizo\(\displaystyle \sum_{n=1}^∞\frac{1}{n}\) diverges kwa sababu maneno katika mlolongo\( \left\{\frac{1}{n}\right\}\) wala mbinu sifuri haraka kutosha kama\( n→∞\). Hapa tunaanzisha mtihani wa uwiano, ambayo hutoa njia ya kupima jinsi ya kufunga maneno ya mfululizo wa sifuri.

    Mtihani wa uwiano

    Hebu\(\displaystyle \sum^∞_{n=1}a_n\) kuwa mfululizo na masharti yasiyo ya sifuri. Hebu

    \[ρ=\lim_{n→∞} \left|\frac{a_{n+1}}{a_n}\right|. \nonumber \]

    1. Ikiwa\( 0≤ρ<1,\) basi\(\displaystyle \sum^∞_{n=1}a_n\) hujiunga kabisa.
    2. Ikiwa\( ρ>1\) au\( ρ=∞\), basi\(\displaystyle \sum^∞_{n=1}a_n\) hupungua.
    3. Ikiwa\( ρ=1,\) mtihani hautoi taarifa yoyote.
    Ushahidi

    Hebu\(\displaystyle \sum_{n=1}^∞a_n\) kuwa mfululizo na masharti yasiyo ya sifuri.

    Tunaanza na ushahidi wa sehemu i. katika kesi hii,\( ρ=\lim_{n→∞}∣\frac{a_{n+1}}{a_n}∣<1.\) tangu\( 0≤ρ<1\), kuna\( R\) vile kwamba\( 0≤ρ<R<1\). Hebu\( ε=R−ρ>0\). Kwa ufafanuzi wa kikomo cha mlolongo, kuna baadhi ya integer\( N\) vile

    \[\left|\left|\frac{a_{n+1}}{a_n}\right|−ρ\right|<ε,\;\text{for all}\; n≥N. \nonumber \]

    Kwa hiyo,

    \[\left|\frac{a_{n+1}}{a_n}\right|<ρ+ε=R, \;\text{for all}\; n≥N \nonumber \]

    na, hivyo,

    \( |a_{N+1}|<R|a_N|\)

    \( ∣a_{N+2}∣<R∣a_{N+1}∣<R^2∣a_N∣\)

    \( ∣a_{N+3}∣<R∣a_{N+2}∣<R^2∣a_{N+1}∣<R^3∣a_N∣\)

    \( ∣a_{N+4}∣<R∣a_{N+3}∣<R^2∣a_{N+2}∣<R^3∣a_{N+1}∣<R^4∣a_N∣\)

    \( ⋮.\)

    Tangu mfululizo\( R<1,\) wa kijiometri

    \[R∣a_N∣+R^2∣a_N∣+R^3∣a_N∣+⋯ \nonumber \]

    hukutana. Kutokana na usawa hapo juu, tunaweza kutumia mtihani wa kulinganisha na kuhitimisha kuwa mfululizo

    \[|a_{N+1}|+|a_{N+2}|+|a_{N+3}|+|a_{N+4}|+⋯ \nonumber \]

    hukutana. Kwa hiyo, tangu

    \[\sum_{n=1}^∞|a_n|=\sum_{n=1}^N|a_n|+\sum_{n=N+1}^∞|a_n| \nonumber \]

    ambapo\(\displaystyle \sum_{n=1}^N|a_n|\) ni jumla ya mwisho na\(\displaystyle \sum_{n=N+1}^∞|a_n|\) converges, sisi kuhitimisha kwamba\(\displaystyle \sum_{n=1}^∞|a_n|\) converges.

    Kwa sehemu ya ii.

    \[ρ=\lim_{n→∞}\left|\frac{a_{n+1}}{a_n}\right|>1. \nonumber \]

    Kwa\( ρ>1,\) kuwa kuna\( R\) vile vile\( ρ>R>1\). Hebu\( ε=ρ−R>0\). Kwa ufafanuzi wa kikomo cha mlolongo, kuna integer\( N\) vile

    \[\left|\left|\frac{a_{n+1}}{a_n}\right|−ρ\right|<ε, \;\text{for all}\; n≥N. \nonumber \]

    Kwa hiyo,

    \[R=ρ−ε<\left|\frac{a_{n+1}}{a_n}\right|, \;\text{for all}\; n≥N, \nonumber \]

    na, hivyo,

    \( |a_{N+1}|>R|a_N|\)

    \( ∣a_{N+2}∣>R∣a_{N+1}∣>R^2∣a_N∣\)

    \( ∣a_{N+3}∣>R∣a_{N+2}∣>R^2∣a_{N+1}∣>R^3∣a_N∣\)

    \( ∣a_{N+4}∣>R∣a_{N+3}∣>R^2∣a_{N+2}∣>R^3∣a_{N+1}∣>R^4∣a_N∣.\)

    Tangu mfululizo\( R>1,\) wa kijiometri

    \[R∣a_N∣+R^2∣a_N∣+R^3∣a_N∣+⋯ \nonumber \]

    hutengana. Kutumia mtihani wa kulinganisha, tunahitimisha kuwa mfululizo

    \[|a_{N+1}|+|a_{N+2}|+|a_{N+3}|+⋯ \nonumber \]

    diverges, na kwa hiyo mfululizo\(\displaystyle \sum_{n=1}^∞|a_n|\) diverges.

    Kwa sehemu ya ii. sisi kuonyesha kwamba mtihani haitoi taarifa yoyote kama\( ρ=1\) kwa kuzingatia\( p−series\)\(\displaystyle \sum^∞_{n=1}\frac{1}{n^p}\). Kwa idadi yoyote halisi\( p\),

    \[ρ=\lim_{n→∞}\frac{1/(n+1)^p}{1/n^p}=\lim_{n→∞}\frac{n^p}{(n+1)^p}=1. \nonumber \]

    Hata hivyo, tunajua kwamba kama\( p≤1,\) p-mfululizo\(\displaystyle \sum^∞_{n=1}\frac{1}{n^p}\) diverges, wakati\(\displaystyle \sum^∞_{n=1}\frac{1}{n^p}\) converges kama\( p>1\).

    Mtihani wa uwiano ni muhimu sana kwa mfululizo ambao maneno yana vyenye factorials au kielelezo, ambapo uwiano wa maneno hurahisisha kujieleza. Mtihani wa uwiano ni rahisi kwa sababu hauhitaji sisi kupata mfululizo wa kulinganisha. Vikwazo ni kwamba mtihani wakati mwingine hautoi taarifa yoyote kuhusu kuunganishwa.

    Mfano\( \PageIndex{1}\): Using the Ratio Test

    Kwa kila moja ya mfululizo wafuatayo, tumia mtihani wa uwiano ili uone kama mfululizo unajiunga au hupungua.

    1. \(\displaystyle \sum^∞_{n=1}\frac{2^n}{n!}\)
    2. \(\displaystyle \sum^∞_{n=1}\frac{n^n}{n!} \)
    3. \(\displaystyle \sum_{n=1}^∞\frac{(−1)^n(n!)^2}{(2n)!}\)

    Suluhisho

    a Kutoka mtihani wa uwiano, tunaweza kuona hiyo

    \[ ρ=\lim_{n→∞}\frac{2^{n+1}/(n+1)!}{2^n/n!}=\lim_{n→∞}\frac{2^{n+1}}{(n+1)!}⋅\frac{n!}{2^n}. \nonumber \]

    Tangu\( (n+1)!=(n+1)⋅n!,\)

    \[ ρ=\lim_{n→∞}\frac{2}{n+1}=0. \nonumber \]

    Tangu\( ρ<1,\) mfululizo hujiunga.

    b Tunaweza kuona kwamba

    \[ ρ=\lim_{n→∞}\frac{(n+1)^{n+1}/(n+1)!}{n^n/n!}=\lim_{n→∞}\frac{(n+1)^{n+1}}{(n+1)!}⋅\frac{n!}{n^n}=\lim_{n→∞}(\frac{n+1}{n})^n=\lim_{n→∞}(1+\frac{1}{n})^n=e. \nonumber \]

    Tangu\( ρ>1,\) mfululizo hupungua.

    c Tangu

    \[ ∣\frac{(−1)^{n+1}((n+1)!)^2/(2(n+1))!}{(−1)^n(n!)^2/(2n)!}∣=\frac{(n+1)!(n+1)!}{(2n+2)!}⋅\frac{(2n)!}{n!n!}=\frac{(n+1)(n+1)}{(2n+2)(2n+1)} \nonumber \]

    tunaona kwamba

    \[ ρ=\lim_{n→∞}\frac{(n+1)(n+1)}{(2n+2)(2n+1)}=\frac{1}{4}. \nonumber \]

    Tangu\( ρ<1\), mfululizo hujiunga.

    Zoezi\(\PageIndex{1}\)

    Tumia mtihani wa uwiano ili uone kama mfululizo\(\displaystyle \sum^∞_{n=1}\frac{n^3}{3^n}\) unajiunga au unapungua.

    Kidokezo

    Tathmini\(\displaystyle \lim_{n→∞}\frac{(n+1)^3}{3^{n+1}}⋅\frac{3^n}{n^3}.\)

    Jibu

    Mfululizo hujiunga.

    Mtihani wa mizizi

    Njia ya mtihani wa mizizi ni sawa na ile ya mtihani wa uwiano. Fikiria mfululizo\(\displaystyle \sum^∞_{n=1}a_n\) kama huo\(\displaystyle \lim_{n→∞}\sqrt[n]{|a_n|}=ρ\) kwa idadi halisi\( ρ\). Kisha kwa\( N\) kutosha kubwa,\( ∣a_N∣≈ρN.\) Kwa hiyo, tunaweza takriban\(\displaystyle \sum_{n=N}^∞|a_n|\) kwa kuandika

    \[∣a_N∣+∣a_{N+1}∣+∣a_{N+2}∣+⋯≈ρ^N+ρ^{N+1}+ρ^{N+2}+⋯. \nonumber \]

    Maneno upande wa kulia ni mfululizo wa kijiometri. Kama katika mtihani wa uwiano, mfululizo\(\displaystyle \sum^∞_{n=1}a_n\) hujiunga kabisa ikiwa\( 0≤ρ<1\) na mfululizo unatofautiana ikiwa\( ρ≥1\). Ikiwa\( ρ=1\), mtihani hautoi taarifa yoyote. Kwa mfano, kwa yoyote p-mfululizo\(\displaystyle \sum_{n=1}^∞\frac{1}{n^p}\), tunaona kwamba

    \[ρ=\lim_{n→∞}\sqrt[n]{∣\frac{1}{n^p}∣}=\lim_{n→∞}\frac{1}{n^{p/n}} \nonumber \].

    Ili kutathmini kikomo hiki, tunatumia kazi ya logarithm ya asili. Kufanya hivyo, tunaona kwamba

    \( \ln ρ=\ln(\lim_{n→∞}\frac{1}{n^{p/n}})=\lim_{n→∞}\ln(\frac{1}{n})^{p/n}=\lim_{n→∞}\frac{p}{n}⋅\ln(\frac{1}{n})=\lim_{n→∞}\frac{p\ln(1/n)}{n}.\)

    Kutumia utawala wa L'Hôpital, inafuata hiyo\( \ln ρ=0\), na\( ρ=1\) kwa hiyo kwa wote\( p\). Hata hivyo, tunajua kwamba p-mfululizo tu converges kama\( p>1\) na diverges kama\( p<1\).

    Mtihani wa mizizi

    Fikiria mfululizo\(\displaystyle \sum^∞_{n=1}a_n\). Hebu

    \[ρ=\lim_{n→∞}\sqrt[n]{|a_n|} \nonumber \].

    1. Ikiwa\( 0≤ρ<1,\) basi\(\displaystyle \sum^∞_{n=1}a_n\) hujiunga kabisa.
    2. Ikiwa\( ρ>1\) au\( ρ=∞\), basi\(\displaystyle \sum^∞_{n=1}a_n\) hupungua.
    3. Ikiwa\( ρ=1\), mtihani hautoi taarifa yoyote.

    Mtihani wa mizizi ni muhimu kwa mfululizo ambao maneno yanahusisha maonyesho. Hasa, kwa mfululizo ambao maneno\( a_n\) yanakidhi\( |a_n|=(b_n)^n\), basi\( \sqrt[n]{|a_n|}=b_n\) na tunahitaji tu kutathmini\(\displaystyle \lim_{n→∞}b_n\).

    Mfano\( \PageIndex{2}\): Using the Root Test

    Kwa kila moja ya mfululizo wafuatayo, tumia mtihani wa mizizi ili uone kama mfululizo unajiunga au hupungua.

    1. \(\displaystyle \sum^∞_{n=1}\frac{(n^2+3n)^n}{(4n^2+5)^n}\)
    2. \(\displaystyle \sum^∞_{n=1}\frac{n^n}{(\ln(n))^n}\)

    Suluhisho

    a Ili kutumia mtihani wa mizizi, tunakokotoa

    \[ ρ=\lim_{n→∞}\sqrt[n]{(n^2+3n)^n/(4n^2+5)^n}=\lim_{n→∞}\frac{n^2+3n}{4n^2+5}=\frac{1}{4}. \nonumber \]

    Tangu\( ρ<1,\) mfululizo hujiunga kabisa.

    b. tuna

    \[ ρ=\lim_{n→∞}\sqrt[n]{n^n/(\ln n)^n}=\lim_{n→∞}\frac{n}{\ln n}=∞\quad \text{by L’Hôpital’s rule.} \nonumber \]

    Tangu\( ρ=∞\), mfululizo hupungua.

    Zoezi\(\PageIndex{2}\)

    Tumia mtihani wa mizizi ili uone kama mfululizo\(\displaystyle \sum^∞_{n=1}1/n^n\) unajiunga au hupungua.

    Kidokezo

    Tathmini\(\displaystyle \lim_{n→∞}\sqrt[n]{\frac{1}{n^n}}\).

    Jibu

    Mfululizo hujiunga.

    Uchaguzi wa Mtihani wa Kuunganisha

    Kwa hatua hii, tuna orodha ndefu ya vipimo vya kuunganisha. Hata hivyo, si vipimo vyote vinaweza kutumika kwa mfululizo wote. Unapopewa mfululizo, tunapaswa kuamua ni mtihani gani unaofaa kutumia. Hapa ni mkakati wa kutafuta mtihani bora wa kuomba.

    Mkakati wa Kutatua Matatizo: Uchaguzi wa Mtihani wa Kuunganisha kwa Mfululizo

    Fikiria mfululizo\(\displaystyle \sum_{n=1}^∞a_n.\) Katika hatua zilizo chini, tunaelezea mkakati wa kuamua kama mfululizo unajiunga.

    1. Je\(\displaystyle \sum_{n=1}^∞a_n\), ni mfululizo unaojulikana? Kwa mfano, ni mfululizo wa harmonic (ambayo hutofautiana) au mfululizo wa harmonic unaobadilisha (ambao hujiunga)? Je, ni mfululizo wa p-a au mfululizo wa kijiometri? Ikiwa ndivyo, angalia nguvu\( p\) au uwiano\( r\) ili uone ikiwa mfululizo unajiunga.
    2. Je, ni mfululizo mbadala? Je, sisi nia ya muunganiko kabisa au muunganiko tu? Ikiwa tunapenda tu ikiwa mfululizo unajiunga, tumia mtihani wa mfululizo wa mfululizo. Ikiwa tuna nia ya kuunganishwa kabisa, endelea hatua\( 3\), kwa kuzingatia mfululizo wa maadili kamili\(\displaystyle \sum_{n=1}^∞|a_n|.\)
    3. Je, mfululizo unafanana na mfululizo wa p-au mfululizo wa kijiometri? Ikiwa ndivyo, jaribu mtihani wa kulinganisha au mtihani wa kulinganisha kikomo.
    4. Je, maneno katika mfululizo yana factorial au nguvu? Ikiwa maneno ni nguvu kama hiyo\( a_n=(b_n)^n,\) jaribu mtihani wa mizizi kwanza. Vinginevyo, jaribu mtihani wa uwiano kwanza.
    5. Tumia mtihani wa tofauti. Ikiwa mtihani huu hautoi taarifa yoyote, jaribu mtihani muhimu.

    Ziara tovuti hii kwa taarifa zaidi juu ya kupima mfululizo kwa muunganiko, pamoja na maelezo ya jumla juu ya Utaratibu na mfululizo.

    Mfano\( \PageIndex{3}\): Using Convergence Tests

    Kwa kila moja ya mfululizo wafuatayo, tambua mtihani wa kuunganisha ni bora kutumia na kuelezea kwa nini. Kisha uamua ikiwa mfululizo unajiunga au hupungua. Ikiwa mfululizo ni mfululizo wa kubadilisha, onyesha ikiwa unajiunga kabisa, hujiunga na hali ya kimwili, au hutofautiana.

    1. \(\displaystyle \sum^∞_{n=1}\frac{n^2+2n}{n^3+3n^2+1}\)
    2. \(\displaystyle \sum^∞_{n=1}\frac{(−1)^{n+1}(3n+1)}{n!}\)
    3. \(\displaystyle \sum^∞_{n=1}\frac{e^n}{n^3}\)
    4. \(\displaystyle \sum^∞_{n=1}\frac{3^n}{(n+1)^n}\)

    Suluhisho

    a Hatua ya 1. Mfululizo sio mfululizo wa p—au mfululizo wa kijiometri.

    Hatua ya 2. Mfululizo haubadilishwi.

    Hatua ya 3. Kwa maadili makubwa ya\( n\), sisi takriban mfululizo kwa kujieleza

    \( \frac{n^2+2n}{n^3+3n^2+1}≈\frac{n^2}{n^3}=\frac{1}{n}.\)

    Kwa hiyo, inaonekana busara kutumia mtihani wa kulinganisha au kupima mtihani wa kulinganisha kwa kutumia mfululizo\(\displaystyle \sum_{n=1}^∞1/n\). Kutumia mtihani wa kulinganisha kikomo, tunaona

    \(\displaystyle \lim_{n→∞}\frac{(n^2+2n)/(n^3+3n^2+1)}{1/n}=\lim_{n→∞}\frac{n^3+2n^2}{n^3+3n^2+1}=1.\)

    Tangu mfululizo\(\displaystyle \sum_{n=1}^∞1/n\)

    diverges, mfululizo huu diverges pia.

    b. hatua ya 1.mfululizo si mfululizo ukoo.

    Hatua ya 2. Mfululizo unabadilisha. Kwa kuwa tuna nia ya kuunganisha kabisa, fikiria mfululizo

    \(\displaystyle \sum_{n=1}^∞\frac{3n}{(n+1)!}.\)

    Hatua ya 3. Mfululizo haufanani na mfululizo wa p au mfululizo wa kijiometri.

    Hatua ya 4. Kwa kuwa kila neno lina factorial, tumia mtihani wa uwiano. Tunaona kwamba

    \(\displaystyle \lim_{n→∞}\frac{(3(n+1))/(n+1)!}{(3n+1)/n!}=\lim_{n→∞}\frac{3n+3}{(n+1)!}⋅\frac{n!}{3n+1}=\lim_{n→∞}\frac{3n+3}{(n+1)(3n+1)}=0.\)

    Kwa hiyo, mfululizo huu unajiunga, na tunahitimisha kuwa mfululizo wa awali unajiunga kabisa, na hivyo hujiunga.

    c Hatua ya 1. Mfululizo sio mfululizo wa kawaida.

    Hatua ya 2. Si mfululizo alternating.

    Hatua ya 3. Hakuna mfululizo wa wazi ambao unaweza kulinganisha mfululizo huu.

    Hatua ya 4. Hakuna factorial. Kuna nguvu, lakini sio hali nzuri kwa mtihani wa mizizi.

    Hatua ya 5. Ili kuomba mtihani wa kutofautiana, tunahesabu hiyo

    \(\displaystyle \lim_{n→∞}\frac{e^n}{n^3}=∞.\)

    Kwa hiyo, kwa mtihani wa tofauti, mfululizo hupungua.

    d Hatua ya 1. Mfululizo huu sio mfululizo wa kawaida.

    Hatua ya 2. Si mfululizo alternating.

    Hatua ya 3. Hakuna mfululizo wa wazi ambao unaweza kulinganisha mfululizo huu.

    Hatua ya 4. Kwa kuwa kila neno ni nguvu ya n, tunaweza kutumia mtihani mizizi. Tangu

    \(\displaystyle \lim_{n→∞}\sqrt[n]{(\frac{3}{n+1})^n}=\lim_{n→∞}\frac{3}{n+1}=0,\)

    kwa mtihani wa mizizi, tunahitimisha kuwa mfululizo hujiunga.

    Zoezi\(\PageIndex{3}\)

    Kwa mfululizo\(\displaystyle \sum^∞_{n=1}\frac{2^n}{3^n+n}\), tambua mtihani wa kuunganisha ni bora kutumia na kuelezea kwa nini.

    Kidokezo

    Mfululizo huo ni sawa na mfululizo wa kijiometri\(\displaystyle \sum^∞_{n=1}\left(\frac{2}{3}\right)^n\).

    Jibu

    Mtihani wa kulinganisha\( \dfrac{2^n}{3^n+n}<\dfrac{2^n}{3^n}\) kwa sababu kwa integers zote nzuri\( n\). Mtihani wa kulinganisha kikomo pia unaweza kutumika.

    Katika Jedwali, sisi muhtasari vipimo muunganiko na wakati kila inaweza kutumika. Kumbuka kuwa wakati mtihani wa kulinganisha, mtihani wa kulinganisha kikomo, na mtihani muhimu\(\displaystyle \sum_{n=1}^∞a_n\) unahitaji mfululizo kuwa na maneno yasiyo ya hasi, ikiwa\(\displaystyle \sum_{n=1}^∞a_n\) ina maneno mabaya, vipimo hivi vinaweza\(\displaystyle \sum_{n=1}^∞|a_n|\) kutumiwa kupima kwa muunganiko kamili.

    Muhtasari wa vipimo vya Kuunganishwa
    Mfululizo au mtihani Hitimisho Maoni

    Mtihani wa tofauti

    Kwa mfululizo wowote\(\displaystyle \sum^∞_{n=1}a_n\), tathmini\(\displaystyle \lim_{n→∞}a_n\).

    Ikiwa\(\displaystyle \lim_{n→∞}a_n=0\), mtihani haujulikani. Jaribio hili haliwezi kuthibitisha muunganiko wa mfululizo.
    Ikiwa\(\displaystyle \lim_{n→∞}a_n≠0\), mfululizo hupungua.

    Geometric Series

    \(\displaystyle \sum^∞_{n=1}ar^{n−1}\)

    Kama\( |r|<1\), mfululizo hujiunga na\( a/(1−r)\). Mfululizo wowote wa kijiometri unaweza kurejeshwa ili kuandikwa kwa fomu\( a+ar+ar^2+⋯\), wapi\( a\) muda wa awali na r ni uwiano.
    Ikiwa\( |r|≥1,\) mfululizo unatofautiana.

    P-mfululizo

    \(\displaystyle \sum^∞_{n=1}\frac{1}{n^p}\)

    Ikiwa\( p>1\), mfululizo hujiunga. Kwa\( p=1\), tuna mfululizo harmonic\(\displaystyle \sum^∞_{n=1}1/n\).
    Ikiwa\( p≤1\), mfululizo hupungua.

    Mtihani wa kulinganisha

    \(\displaystyle \sum^∞_{n=1}a_n \)Kwa maneno yasiyo ya hasi, kulinganisha na mfululizo unaojulikana\(\displaystyle \sum^∞_{n=1}b_n\).

    Ikiwa\( a_n≤b_n\) kwa wote\( n≥N\) na\(\displaystyle \sum^∞_{n=1}b_n\) hujiunga, kisha\(\displaystyle \sum^∞_{n=1}a_n\) hujiunga. Kwa kawaida kutumika kwa mfululizo sawa na kijiometri au\( p\) -mfululizo. Wakati mwingine inaweza kuwa vigumu kupata mfululizo sahihi.
    Ikiwa\( a_n≥b_n\) kwa wote\( n≥N\) na\(\displaystyle \sum^∞_{n=1}b_n\) hutofautiana, basi\(\displaystyle \sum^∞_{n=1}a_n\) hutofautiana.

    Limit kulinganisha mtihani

    \(\displaystyle \sum^∞_{n=1}a_n\)Kwa maneno mazuri, kulinganisha na mfululizo\(\displaystyle \sum^∞_{n=1}b_n\) kwa kutathmini

    \( L=\displaystyle \lim_{n→∞}\frac{a_n}{b_n}.\)

    Ikiwa\( L\) ni namba halisi na\( L≠0\), basi\(\displaystyle \sum^∞_{n=1}a_n\) na\(\displaystyle \sum^∞_{n=1}b_n\) wote wawili hujiunga au wote wawili wanatofautiana. Kwa kawaida kutumika kwa mfululizo sawa na kijiometri au\( p\) -mfululizo. Mara nyingi rahisi kutumia kuliko mtihani wa kulinganisha.
    Ikiwa\( L=0\) na\(\displaystyle \sum^∞_{n=1}b_n\) hujiunga, kisha\(\displaystyle \sum^∞_{n=1}a_n\) hujiunga.
    Ikiwa\( L=∞\) na\(\displaystyle \sum^∞_{n=1}b_n\) hutofautiana, basi\(\displaystyle \sum^∞_{n=1}a_n\) hupungua.

    Integral mtihani

    Ikiwa kuna kazi nzuri, inayoendelea, inayopungua\( f\) kama hiyo\( a_n=f(n)\) kwa wote\( n≥N\), tathmini\( \displaystyle ∫^∞_Nf(x)dx.\)

    \( ∫^∞_Nf(x)dx\)na\(\displaystyle \sum^∞_{n=1}a_n\) wote hujiunga au wote wawili wanatofautiana. Imepunguzwa kwa mfululizo huo ambao kazi inayofanana f inaweza kuunganishwa kwa urahisi.

    Mfululizo mbadala

    \(\displaystyle \sum^∞_{n=1}(−1)^{n+1}b_n\)au\(\displaystyle \sum^∞_{n=1}(−1)^nb_n\)

    Ikiwa\( b_{n+1}≤b_n\) kwa wote\( n≥1\) na\( b_n→0\), basi mfululizo hujiunga. Inatumika tu kwa mfululizo wa kubadilisha.

    Mtihani wa uwiano

    Kwa mfululizo wowote\(\displaystyle \sum^∞_{n=1}a_n\) na masharti yasiyo ya sifuri, basi\(\displaystyle ρ=\lim_{n→∞}\left|\frac{a_{n+1}}{a_n}\right|\)

    Ikiwa\( 0≤ρ<1\), mfululizo hujiunga kabisa. Mara nyingi hutumiwa kwa mfululizo unaohusisha factorials au exponentials.
    Ikiwa\( ρ>1\) au\( ρ=∞\), mfululizo hupungua.
    Ikiwa\( ρ=1\), mtihani haujulikani.

    Mtihani wa mizizi

    Kwa mfululizo wowote\(\displaystyle \sum^∞_{n=1}a_n\), basi\( \displaystyle ρ=\lim_{n→∞}\sqrt[n]{|a_n|}\).

    Ikiwa\( 0≤ρ<1\), mfululizo hujiunga kabisa. Mara nyingi hutumika kwa ajili ya mfululizo ambapo\( |a_n|=(b_n)^n\).
    Ikiwa\( ρ>1\) au\( ρ=∞\), mfululizo hupungua.
    Ikiwa\( ρ=1\), mtihani haujulikani.
    Mfululizo Converging kwa\( π\) and \( 1/π\)

    Kadhaa ya mfululizo zipo kwamba hujiunga na\( π\) or an algebraic expression containing \( π\). Here we look at several examples and compare their rates of convergence. By rate of convergence, we mean the number of terms necessary for a partial sum to be within a certain amount of the actual value. The series representations of \( π\) in the first two examples can be explained using Maclaurin series, which are discussed in the next chapter. The third example relies on material beyond the scope of this text.

    1. Mfululizo

    \[π=4\sum_{n=1}^∞\frac{(−1)^{n+1}}{2n−1}=4−\frac{4}{3}+\frac{4}{5}−\frac{4}{7}+\frac{4}{9}−⋯ \nonumber \]

    iligunduliwa na Gregory na Leibniz mwishoni mwa\( 1600s\). This result follows from the Maclaurin series for \( f(x)=\tan^{−1}x\). We will discuss this series in the next chapter.

    Thibitisha kwamba mfululizo huu hujiunga.

    b Kutathmini kiasi cha sehemu\( S_n\) for \( n=10,20,50,100.\)

    c Matumizi makadirio salio kwa mfululizo alternating kupata amefungwa juu ya makosa\( R_n\).

    d. ni thamani ndogo ya\( N\) that guarantees \( |R_N|<0.01\)? Evaluate \( S_N\).

    2. Mfululizo

    \[π=6\sum^∞_{n=0}\frac{(2n)!}{2^{4n+1}(n!)^2(2n+1)}=6\left(\frac{1}{2}+\frac{1}{2⋅3}\left(\frac{1}{2}\right)^3+\frac{1⋅3}{2⋅4⋅5}⋅\left(\frac{1}{2}\right)^5+\frac{1⋅3⋅5}{2⋅4⋅6⋅7}\left(\frac{1}{2}\right)^7+⋯\right) \nonumber \]

    imekuwa kuhusishwa na Newton mwishoni mwa\( 1600s\). The proof of this result uses the Maclaurin series for \( f(x)=\sin^{−1}x\).

    Thibitisha kwamba mfululizo hujiunga.

    b Kutathmini kiasi cha sehemu\( S_n\) for \( n=5,10,20.\)

    c. kulinganisha\(S_n\) na\( π\) for \( n=5,10,20\) and discuss the number of correct decimal places.

    3. Mfululizo

    \[\frac{1}{π}=\frac{\sqrt{8}}{9801}\sum_{n=0}^∞\frac{(4n)!(1103+26390n)}{(n!)^4396^{4n}} \nonumber \]

    iligunduliwa na Ramanujan mapema\( 1900s\). William Gosper, Jr., used this series to calculate \( π\) to an accuracy of more than \( 17\) million digits in the \( mid-1980s\). At the time, that was a world record. Since that time, this series and others by Ramanujan have led mathematicians to find many other series representations for \( π\) and \( 1/π\).

    Thibitisha kwamba mfululizo huu hujiunga.

    b Tathmini ya muda wa kwanza katika mfululizo huu. Linganisha nambari hii na thamani ya\( π\) from a calculating utility. To how many decimal places do these two numbers agree? What if we add the first two terms in the series?

    c Kuchunguza maisha ya Srinivasa Ramanujan\( (1887–1920)\) and write a brief summary. Ramanujan is one of the most fascinating stories in the history of mathematics. He was basically self-taught, with no formal training in mathematics, yet he contributed in highly original ways to many advanced areas of mathematics.

    Dhana muhimu

    • Kwa mtihani wa uwiano, tunazingatia\[ρ=\lim_{n→∞}∣\frac{a_{n+1}}{a_n}∣. \nonumber \] Kama\( ρ<1\), mfululizo\(\displaystyle \sum_{n=1}^∞a_n\) hujiunga kabisa. Ikiwa\( ρ>1\), mfululizo hupungua. Ikiwa\( ρ=1\), mtihani hautoi taarifa yoyote. Jaribio hili ni muhimu kwa mfululizo ambao maneno yanahusisha factorials.
    • Kwa mtihani wa mizizi, tunazingatia\[ρ=\lim_{n→∞}\sqrt[n]{|a_n|}. \nonumber \] Kama\( ρ<1\), mfululizo\(\displaystyle \sum_{n=1}^∞a_n\) hujiunga kabisa. Ikiwa\( ρ>1\), mfululizo hupungua. Ikiwa\( ρ=1\), mtihani hautoi taarifa yoyote. Mtihani wa mizizi ni muhimu kwa mfululizo ambao maneno yanahusisha mamlaka.
    • Kwa mfululizo unaofanana na mfululizo wa kijiometri au p-mfululizo, fikiria mojawapo ya vipimo vya kulinganisha.

    faharasa

    mtihani wa uwiano
    kwa mfululizo\(\displaystyle \sum^∞_{n=1}a_n\) na maneno yasiyo ya sifuri, basi\( \displaystyle ρ=\lim_{n→∞}|a_{n+1}/a_n|\); ikiwa\( 0≤ρ<1\), mfululizo hujiunga kabisa; ikiwa\( ρ>1\), mfululizo unatofautiana; ikiwa\( ρ=1\), mtihani hauwezi kufafanua
    mtihani wa mizizi
    kwa mfululizo\(\displaystyle \sum^∞_{n=1}a_n,\) basi\( \displaystyle ρ=\lim_{n→∞}\sqrt[n]{|a_n|}\); ikiwa\( 0≤ρ<1\), mfululizo unajiunga kabisa; ikiwa\( ρ>1\), mfululizo hupungua; ikiwa\( ρ=1\), mtihani hauwezi kukamilika