Skip to main content
Global

7.8: Sura ya 7 Mazoezi ya Mapitio

  • Page ID
    178856
    • Edwin “Jed” Herman & Gilbert Strang
    • OpenStax
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Katika mazoezi ya 1 - 4, onyesha kama taarifa hiyo ni ya kweli au ya uongo. Thibitisha jibu lako kwa ushahidi au mfano wa kukabiliana.

    1)\(\displaystyle ∫e^x\sin(x)\,dx\) haiwezi kuunganishwa na sehemu.

    2)\(\displaystyle ∫\frac{1}{x^4+1}\,dx\) haiwezi kuunganishwa kwa kutumia sehemu ndogo.

    Jibu
    Uongo

    3) Katika ushirikiano wa namba, kuongeza idadi ya pointi hupungua kosa.

    4) Ushirikiano na sehemu unaweza daima mavuno muhimu.

    Jibu
    Uongo

    Katika mazoezi ya 5 - 10, tathmini muhimu kwa kutumia njia maalum.

    5)\(\displaystyle ∫x^2\sin(4x)\,dx,\) kutumia ushirikiano na sehemu

    6)\(\displaystyle ∫\frac{1}{x^2\sqrt{x^2+16}}\,dx,\) kutumia badala ya trigonometric

    Jibu
    \(\displaystyle ∫\frac{1}{x^2\sqrt{x^2+16}}\,dx = −\frac{\sqrt{x^2+16}}{16x}+C\)

    7)\(\displaystyle ∫\sqrt{x}\ln x\,dx,\) kutumia ushirikiano na sehemu

    8)\(\displaystyle ∫\frac{3x}{x^3+2x^2−5x−6}\,dx,\) kutumia sehemu ndogo

    Jibu
    \(\displaystyle ∫\frac{3x}{x^3+2x^2−5x−6}\,dx = \frac{1}{10}\big(4\ln|2−x|+5\ln|x+1|−9\ln|x+3|\big)+C\)

    9)\(\displaystyle ∫\frac{x^5}{(4x^2+4)^{5/2}}\,dx,\) kutumia badala ya trigonometric

    10)\(\displaystyle ∫\frac{\sqrt{4−\sin^2(x)}}{\sin^2(x)}\cos(x)\,dx,\) kutumia meza ya integrals au CAS

    Jibu
    \(\displaystyle ∫\frac{\sqrt{4−\sin^2(x)}}{\sin^2(x)}\cos(x)\,dx = −\frac{\sqrt{4−\sin^2(x)}}{\sin(x)}−\frac{x}{2}+C\)

    Katika mazoezi 11 - 15, kuunganisha kutumia njia yoyote unayochagua.

    11)\(\displaystyle ∫\sin^2 x\cos^2 x\,dx\)

    12)\(\displaystyle ∫x^3\sqrt{x^2+2}\,dx\)

    Jibu
    \(\displaystyle ∫x^3\sqrt{x^2+2}\,dx = \frac{1}{15}(x^2+2)^{3/2}(3x^2−4)+C\)

    13)\(\displaystyle ∫\frac{3x^2+1}{x^4−2x^3−x^2+2x}\,dx\)

    14)\(\displaystyle ∫\frac{1}{x^4+4}\,dx\)

    Jibu
    \(\displaystyle ∫\frac{1}{x^4+4}\,dx = \frac{1}{16}\ln(\frac{x^2+2x+2}{x^2−2x+2})−\frac{1}{8}\tan^{−1}(1−x)+\frac{1}{8}\tan^{−1}(x+1)+C\)

    15)\(\displaystyle ∫\frac{\sqrt{3+16x^4}}{x^4}\,dx\)

    Katika mazoezi 16 - 18, takriban integrals kutumia utawala wa midpoint, utawala wa trapezoidal, na utawala wa Simpson kwa kutumia vipindi vinne, vinavyozunguka hadi decimals tatu.

    16) [T]\(\displaystyle ∫^2_1\sqrt{x^5+2}\,dx\)

    Jibu
    \(M_4=3.312,\)
    \(T_4=3.354,\)
    \(S_4=3.326\)

    17) [T]\(\displaystyle ∫^{\sqrt{π}}_0e^{−\sin(x^2)}\,dx\)

    18) [T]\(\displaystyle ∫^4_1\frac{\ln(1/x)}{x}\,dx\)

    Jibu
    \(M_4=−0.982,\)
    \(T_4=−0.917,\)
    \(S_4=−0.952\)

    Katika mazoezi 19 - 20, tathmini integrals, ikiwa inawezekana.

    19)\(\displaystyle ∫^∞_1\frac{1}{x^n}\,dx,\) kwa maadili\(n\) gani ya je, hii muhimu hujiunga au kutofautiana?

    20)\(\displaystyle ∫^∞_1\frac{e^{−x}}{x}\,dx\)

    Jibu
    takriban 0.2194

    Katika mazoezi 21 - 22, fikiria kazi ya gamma iliyotolewa na\(\displaystyle Γ(a)=∫^∞_0e^{−y}y^{a−1}\,dy.\)

    21) Onyesha kwamba\(\displaystyle Γ(a)=(a−1)Γ(a−1).\)

    22) Kupanua kuonyesha kwamba\(\displaystyle Γ(a)=(a−1)!,\) kuchukua\(a\) ni integer chanya.

    Gari la haraka zaidi duniani, Bugati Veyron, linaweza kufikia kasi ya juu ya kilomita 408. grafu inawakilisha kasi yake.

    Takwimu hii ina grafu katika quadrant ya kwanza. Inaongezeka hadi ambapo x ni takriban 03:00 mm:ss na kisha matone mbali mwinuko. Urefu wa juu wa grafu, hapa tone hutokea ni takriban 420 km/h.

    23) [T] Tumia grafu ili kukadiria kasi kila sekunde 20 na inafaa kwa grafu ya fomu\(v(t)=ae^{bx}\sin(cx)+d.\) (Kidokezo: Fikiria vitengo vya wakati.)

    24) [T] Kutumia kazi yako kutoka tatizo la awali, kupata hasa jinsi mbali Bugati Veyron alisafiri katika 1 min 40 sec pamoja na katika grafu.

    Jibu
    Majibu yanaweza kutofautiana. Ex:\(9.405\) km