7.8: Sura ya 7 Mazoezi ya Mapitio
- Page ID
- 178856
Katika mazoezi ya 1 - 4, onyesha kama taarifa hiyo ni ya kweli au ya uongo. Thibitisha jibu lako kwa ushahidi au mfano wa kukabiliana.
1)\(\displaystyle ∫e^x\sin(x)\,dx\) haiwezi kuunganishwa na sehemu.
2)\(\displaystyle ∫\frac{1}{x^4+1}\,dx\) haiwezi kuunganishwa kwa kutumia sehemu ndogo.
- Jibu
- Uongo
3) Katika ushirikiano wa namba, kuongeza idadi ya pointi hupungua kosa.
4) Ushirikiano na sehemu unaweza daima mavuno muhimu.
- Jibu
- Uongo
Katika mazoezi ya 5 - 10, tathmini muhimu kwa kutumia njia maalum.
5)\(\displaystyle ∫x^2\sin(4x)\,dx,\) kutumia ushirikiano na sehemu
6)\(\displaystyle ∫\frac{1}{x^2\sqrt{x^2+16}}\,dx,\) kutumia badala ya trigonometric
- Jibu
- \(\displaystyle ∫\frac{1}{x^2\sqrt{x^2+16}}\,dx = −\frac{\sqrt{x^2+16}}{16x}+C\)
7)\(\displaystyle ∫\sqrt{x}\ln x\,dx,\) kutumia ushirikiano na sehemu
8)\(\displaystyle ∫\frac{3x}{x^3+2x^2−5x−6}\,dx,\) kutumia sehemu ndogo
- Jibu
- \(\displaystyle ∫\frac{3x}{x^3+2x^2−5x−6}\,dx = \frac{1}{10}\big(4\ln|2−x|+5\ln|x+1|−9\ln|x+3|\big)+C\)
9)\(\displaystyle ∫\frac{x^5}{(4x^2+4)^{5/2}}\,dx,\) kutumia badala ya trigonometric
10)\(\displaystyle ∫\frac{\sqrt{4−\sin^2(x)}}{\sin^2(x)}\cos(x)\,dx,\) kutumia meza ya integrals au CAS
- Jibu
- \(\displaystyle ∫\frac{\sqrt{4−\sin^2(x)}}{\sin^2(x)}\cos(x)\,dx = −\frac{\sqrt{4−\sin^2(x)}}{\sin(x)}−\frac{x}{2}+C\)
Katika mazoezi 11 - 15, kuunganisha kutumia njia yoyote unayochagua.
11)\(\displaystyle ∫\sin^2 x\cos^2 x\,dx\)
12)\(\displaystyle ∫x^3\sqrt{x^2+2}\,dx\)
- Jibu
- \(\displaystyle ∫x^3\sqrt{x^2+2}\,dx = \frac{1}{15}(x^2+2)^{3/2}(3x^2−4)+C\)
13)\(\displaystyle ∫\frac{3x^2+1}{x^4−2x^3−x^2+2x}\,dx\)
14)\(\displaystyle ∫\frac{1}{x^4+4}\,dx\)
- Jibu
- \(\displaystyle ∫\frac{1}{x^4+4}\,dx = \frac{1}{16}\ln(\frac{x^2+2x+2}{x^2−2x+2})−\frac{1}{8}\tan^{−1}(1−x)+\frac{1}{8}\tan^{−1}(x+1)+C\)
15)\(\displaystyle ∫\frac{\sqrt{3+16x^4}}{x^4}\,dx\)
Katika mazoezi 16 - 18, takriban integrals kutumia utawala wa midpoint, utawala wa trapezoidal, na utawala wa Simpson kwa kutumia vipindi vinne, vinavyozunguka hadi decimals tatu.
16) [T]\(\displaystyle ∫^2_1\sqrt{x^5+2}\,dx\)
- Jibu
- \(M_4=3.312,\)
\(T_4=3.354,\)
\(S_4=3.326\)
17) [T]\(\displaystyle ∫^{\sqrt{π}}_0e^{−\sin(x^2)}\,dx\)
18) [T]\(\displaystyle ∫^4_1\frac{\ln(1/x)}{x}\,dx\)
- Jibu
- \(M_4=−0.982,\)
\(T_4=−0.917,\)
\(S_4=−0.952\)
Katika mazoezi 19 - 20, tathmini integrals, ikiwa inawezekana.
19)\(\displaystyle ∫^∞_1\frac{1}{x^n}\,dx,\) kwa maadili\(n\) gani ya je, hii muhimu hujiunga au kutofautiana?
20)\(\displaystyle ∫^∞_1\frac{e^{−x}}{x}\,dx\)
- Jibu
- takriban 0.2194
Katika mazoezi 21 - 22, fikiria kazi ya gamma iliyotolewa na\(\displaystyle Γ(a)=∫^∞_0e^{−y}y^{a−1}\,dy.\)
21) Onyesha kwamba\(\displaystyle Γ(a)=(a−1)Γ(a−1).\)
22) Kupanua kuonyesha kwamba\(\displaystyle Γ(a)=(a−1)!,\) kuchukua\(a\) ni integer chanya.
Gari la haraka zaidi duniani, Bugati Veyron, linaweza kufikia kasi ya juu ya kilomita 408. grafu inawakilisha kasi yake.
23) [T] Tumia grafu ili kukadiria kasi kila sekunde 20 na inafaa kwa grafu ya fomu\(v(t)=ae^{bx}\sin(cx)+d.\) (Kidokezo: Fikiria vitengo vya wakati.)
24) [T] Kutumia kazi yako kutoka tatizo la awali, kupata hasa jinsi mbali Bugati Veyron alisafiri katika 1 min 40 sec pamoja na katika grafu.
- Jibu
- Majibu yanaweza kutofautiana. Ex:\(9.405\) km