Skip to main content
Global

7.5: Mikakati mingine ya Ushirikiano

  • Page ID
    178840
    • Edwin “Jed” Herman & Gilbert Strang
    • OpenStax
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Malengo ya kujifunza
    • Tumia meza ya integrals kutatua matatizo ya ushirikiano.
    • Tumia mfumo wa algebra ya kompyuta (CAS) kutatua matatizo ya ushirikiano.

    Mbali na mbinu za ushirikiano tumeona tayari, zana nyingine kadhaa zinapatikana sana kusaidia na mchakato wa ushirikiano. Miongoni mwa zana hizi ni meza za ushirikiano, ambazo zinapatikana kwa urahisi katika vitabu vingi, ikiwa ni pamoja na viambatisho vya hii. Pia inapatikana sana ni mifumo ya algebra ya kompyuta (CAS), ambayo hupatikana kwenye mahesabu na katika maabara mengi ya kompyuta ya chuo, na ni bure mtandaoni.

    Majedwali ya Integrals

    Jedwali la ushirikiano, ikiwa hutumiwa kwa njia sahihi, inaweza kuwa njia nzuri ya kutathmini au kuangalia muhimu haraka. Kumbuka kwamba wakati wa kutumia meza ili uangalie jibu, inawezekana kwa ufumbuzi mbili sahihi kabisa kuonekana tofauti sana. Kwa mfano, katika Badala ya Trigonometric, tumegundua kwamba, kwa kutumia badala\(\displaystyle x=\tan θ,\) tunaweza kufika

    \(\displaystyle ∫\frac{dx}{\sqrt{1+x^2}}=\ln \left| x+\sqrt{x^2+1}\right| +C.\)

    Hata hivyo, kwa kutumia\(\displaystyle x=\sinh θ\), sisi kupatikana ufumbuzi tofauti-yaani,

    \(\displaystyle ∫\frac{dx}{\sqrt{1+x^2}}=\sinh^{−1}x+C.\)

    Sisi baadaye ilionyesha algebraically kwamba ufumbuzi mbili ni sawa. Hiyo ni, tulionyesha kuwa\(\displaystyle \sinh^{−1}x=\ln \left| x+\sqrt{x^2+1}\right| \). Katika kesi hiyo, antiderivatives mbili ambazo tulipata zilikuwa sawa. Hii haipaswi kuwa kesi. Hata hivyo, kwa muda mrefu kama tofauti katika antiderivatives mbili ni mara kwa mara, ni sawa.

    Mfano\(\displaystyle \PageIndex{1}\): Using a Formula from a Table to Evaluate an Integral

    Tumia fomu ya meza

    \(\displaystyle ∫\frac{\sqrt{a^2−u^2}}{u^2}du=−\frac{\sqrt{a^2−u^2}}{u}−\sin^{−1}\frac{u}{a}+C\)

    kutathmini\(\displaystyle ∫\frac{\sqrt{16−e^{2x}}}{e^x}dx.\)

    Suluhisho

    Kama sisi kuangalia meza ushirikiano, tunaona kwamba formula kadhaa vyenye maneno ya fomu Maneno\(\displaystyle \sqrt{a^2−u^2}.\) Hii ni kweli sawa\(\displaystyle a=4\) na\(\displaystyle \sqrt{16−e^{2x}},\) wapi na\(\displaystyle u=e^x\). Kumbuka kwamba ni lazima pia kuwa na\(\displaystyle du=e^x\). Kuzidisha nambari na denominator ya muhimu iliyotolewa na\(\displaystyle e^x\) inapaswa kusaidia kuweka hii muhimu kwa fomu muhimu. Hivyo, sasa tuna

    \(\displaystyle ∫\frac{\sqrt{16−e^{2x}}}{e^x}dx=∫\frac{\sqrt{16−e^{2x}}}{e^{2x}}e^xdx.\)

    Kubadilisha\(\displaystyle u=e^x\) na\(\displaystyle du=e^x\,dx\) kuzalisha\(\displaystyle ∫\frac{\sqrt{a^2−u^2}}{u^2}du.\) Kutoka meza ya ushirikiano (#88 katika Kiambatisho A),

    \(\displaystyle ∫\frac{\sqrt{a^2−u^2}}{u^2}du=−\frac{\sqrt{a^2−u^2}}{u}−\sin^{−1}\frac{u}{a}+C.\)

    Hivyo,

    \(\displaystyle ∫\frac{\sqrt{16−e^{2x}}}{e^x}dx=∫\frac{\sqrt{16−e^{2x}}}{e^{2x}}e^xdx\)Mbadala\(\displaystyle u=e^x\) na\(\displaystyle du=e^xdx.\)

    \(\displaystyle =∫\frac{\sqrt{4^2−u^2}}{u^2}du\)Tumia formula kutumia\(\displaystyle a=4\).

    \(\displaystyle =−\frac{\sqrt{4^2−u^2}}{u}−\sin^{−1}\frac{u}{4}+C\)Mbadala\(\displaystyle u=e^x\).

    \(\displaystyle =−\frac{\sqrt{16−e^{2x}}}{e^x}−\sin^{−1}(\frac{e^x}{4})+C\)

    Kompyuta Algebra Systems

    Ikiwa inapatikana, CAS ni mbadala kwa kasi zaidi kwa meza ya kutatua tatizo la ushirikiano. Mifumo mingi hiyo inapatikana sana na ni, kwa ujumla, rahisi kutumia.

    Mfano\(\displaystyle \PageIndex{2}\): Using a Computer Algebra System to Evaluate an Integral

    Tumia mfumo wa algebra ya kompyuta ili kutathmini\(\displaystyle ∫\frac{dx}{\sqrt{x^2−4}}.\) Linganisha matokeo haya na matokeo\(\displaystyle \ln \left| \frac{\sqrt{x^2−4}}{2}+\frac{x}{2}\right| +C,\) tuliyopata ikiwa tulikuwa tumetumia badala ya trigonometric.

    Suluhisho

    Kutumia Wolfram Alpha, tunapata

    \(\displaystyle ∫\frac{dx}{\sqrt{x^2−4}}=\ln \left|\sqrt{x^2−4}+x\right| +C.\)

    Taarifa kwamba

    \(\displaystyle \ln \left|\frac{\sqrt{x^2−4}}{2}+\frac{x}{2}\right| +C=\ln \left|\frac{\sqrt{x^2−4}+x}{2}\right| +C=\ln \left|\sqrt{x^2−4}+x\right| −\ln 2+C.\)

    Kwa kuwa antiderivatives hizi mbili zinatofautiana na mara kwa mara tu, ufumbuzi ni sawa. Tunaweza pia alionyesha kwamba kila moja ya antiderivatives hizi ni sahihi kwa kutofautisha yao.

    Unaweza kufikia calculator muhimu kwa mifano zaidi.

    Mfano\(\displaystyle \PageIndex{3}\): Using a CAS to Evaluate an Integral

    Tathmini\(\displaystyle ∫ \sin^3x\,dx\) kwa kutumia CAS. Linganisha matokeo kwa\(\displaystyle \frac{1}{3}\cos^3x−\cos x+C\), matokeo tunaweza kuwa kupatikana kwa kutumia mbinu ya kuunganisha nguvu isiyo ya kawaida ya\(\displaystyle \sin x\) kujadiliwa mapema katika sura hii.

    Suluhisho

    Kutumia Wolfram Alpha, tunapata

    \(\displaystyle ∫\sin^3x\,dx=\frac{1}{12}(\cos(3x)−9\cos x)+C.\)

    Hii inaonekana tofauti kabisa na\(\displaystyle \frac{1}{3}\cos^3x−\cos x+C.\) Kuona kwamba antiderivatives hizi ni sawa, tunaweza kufanya matumizi ya utambulisho chache trigonometric:

    \(\displaystyle \frac{1}{12}(\cos(3x)−9\cos x)=\frac{1}{12}(\cos(x+2x)−9\cos x)\)

    \(\displaystyle =\frac{1}{12}(\cos(x)\cos(2x)−\sin(x)\sin(2x)−9\cos x)\)

    \(\displaystyle =\frac{1}{12}(\cos x(2\cos^2x−1)−\sin x(2\sin x \cos x)−9\cos x)\)

    \(\displaystyle =\frac{1}{12}(2\cos^3x−\cos x−2\cos x(1−\cos^2x)−9\cos x)\)

    \(\displaystyle =\frac{1}{12}(4\cos^3x−12\cos x)\)

    \(\displaystyle =\frac{1}{3}\cos^3x−\cos x.\)

    Hivyo, antiderivatives mbili zinafanana.

    Tunaweza pia kutumia CAS kulinganisha grafu ya kazi mbili, kama inavyoonekana katika takwimu zifuatazo.

    Hii ni grafu ya kazi ya mara kwa mara. Mawimbi yana amplitude ya takriban 0.7 na kipindi cha takriban 10. Grafu inawakilisha kazi y = cos ^ 3 (x) /3 - cos (x) na y = 1/12 (cos (3x) -9cos (x). Grafu ni sawa kwa kazi zote mbili.
    Kielelezo\(\PageIndex{1}\): Grafu ya\(\displaystyle y=\frac{1}{3}\cos^3x−\cos x\) na\(\displaystyle y=\frac{1}{12}(\cos(3x)−9\cos x)\) ni sawa.
    Zoezi\(\PageIndex{1}\)

    Tumia CAS kutathmini\(\displaystyle ∫\frac{dx}{\sqrt{x^2+4}}\).

    Kidokezo

    Majibu yanaweza kutofautiana.

    Jibu

    Ufumbuzi unaowezekana ni pamoja\(\displaystyle \sinh^{−1}\left(\frac{x}{2}\right) +C\) na\(\displaystyle \ln\left|\sqrt{x^2+4}+x\right| +C.\)

    Dhana muhimu

    • Jedwali la ushirikiano linaweza kutumika kutathmini integrals isiyojulikana.
    • CAS (au kompyuta algebra mfumo) inaweza kutumika kutathmini integrals kwa muda usiojulikana.
    • Inaweza kuhitaji jitihada za kupatanisha ufumbuzi sawa uliopatikana kwa kutumia mbinu tofauti.

    faharasa

    mfumo wa algebra ya kompyuta (CAS)
    teknolojia kutumika kufanya kazi nyingi hisabati, ikiwa ni pamoja na ushirikiano
    meza ya ushirikiano
    meza ambayo inaorodhesha fomu za ushirikiano