1.6E: Mazoezi
- Page ID
- 176185
Mazoezi hufanya kamili
Tumia Mali za Comutative na Associative
Katika mazoezi yafuatayo, kurahisisha.
1. \(43m+(−12n)+(−16m)+(−9n)\)
- Jibu
-
\(27m+(−21n)\)
2. \(−22p+17q+(−35p)+(−27q)\)
3. \(\frac{3}{8}g+\frac{1}{12}h+\frac{7}{8}g+\frac{5}{12}h\)
- Jibu
-
\(\frac{5}{4}g+\frac{1}{2}h\)
4. \(\frac{5}{6}a+\frac{3}{10}b+\frac{1}{6}a+\frac{9}{10}b\)
5. \(6.8p+9.14q+(−4.37p)+(−0.88q)\)
- Jibu
-
\(2.43p+8.26q\)
6. \(9.6m+7.22n+(−2.19m)+(−0.65n)\)
7. \(−24·7·\frac{3}{8}\)
- Jibu
-
\(−63\)
8. \(−36·11·\frac{4}{9}\)
9. \(\left(\frac{5}{6}+\frac{8}{15}\right)+\frac{7}{15}\)
- Jibu
-
\(1\frac{5}{6}\)
10. \(\left(\frac{11}{12}+\frac{4}{9}\right)+\frac{5}{9}\)
11. \(17(0.25)(4)\)
- Jibu
-
\(17\)
12. \(36(0.2)(5)\)
13. \([2.48(12)](0.5)\)
- Jibu
-
\(14.88\)
14. \([9.731(4)](0.75)\)
15. \(12\left(\frac{5}{6}p\right)\)
- Jibu
-
\(10p\)
16. \(20\left(\frac{3}{5}q\right)\)
Tumia Mali ya Identity, Inverse na Zero
Katika mazoezi yafuatayo, kurahisisha.
17. \(19a+44−19a\)
- Jibu
-
\(44\)
18. \(27c+16−27c\)
19. \(\frac{1}{2}+\frac{7}{8}+\left(−\frac{1}{2}\right)\)
- Jibu
-
\(\frac{7}{8}\)
20. \(\frac{2}{5}+\frac{5}{12}+\left(−\frac{2}{5}\right)\)
21. \(10(0.1d)\)
- Jibu
-
\(d\)
22. \(100(0.01p)\)
23. \(\frac{3}{20}·\frac{49}{11}·\frac{20}{3}\)
- Jibu
-
\(\frac{49}{11}\)
24. \(\frac{13}{18}·\frac{25}{7}·\frac{18}{13}\)
25. \(\frac{0}{u−4.99}\), wapi\(u\neq 4.99\)
- Jibu
-
\(0\)
26. \(0÷(y−\frac{1}{6})\), wapi\(x \neq 16\)
27. \(\frac{32−5a}{0}\), wapi\(32−5a\neq 0\)
- Jibu
-
haijafafanuliwa
28. \(\frac{28−9b}{0}\), wapi\(28−9b\neq 0\)
29. \(\left(\frac{3}{4}+\frac{9}{10}m\right)÷0\), wapi\(\frac{3}{4}+\frac{9}{10}m\neq 0\)
- Jibu
-
haijafafanuliwa
30. \(\left(\frac{5}{16}n−\frac{3}{7}\right)÷0\), wapi\(\frac{5}{16}n−\frac{3}{7}\neq 0\)
Rahisisha Maneno Kutumia Mali ya Kusambaza
Katika mazoezi yafuatayo, kurahisisha kutumia Mali ya Usambazaji.
31. \(8(4y+9)\)
- Jibu
-
\(32y+72\)
32. \(9(3w+7)\)
33. \(6(c−13)\)
- Jibu
-
\(6c−78\)
34. \(7(y−13)\)
35. \(\frac{1}{4}(3q+12)\)
- Jibu
-
\(\frac{3}{4}q+3\)
36. \(\frac{1}{5}(4m+20)\)
37. \(9(\frac{5}{9}y−\frac{1}{3})\)
- Jibu
-
\(5y−3\)
38. \(10(\frac{3}{10}x−\frac{2}{5})\)
39. \(12(\frac{1}{4}+\frac{2}{3}r)\)
- Jibu
-
\(3+8r\)
40. \(12(\frac{1}{6}+\frac{3}{4}s)\)
41. \(15⋅\frac{3}{5}(4d+10)\)
- Jibu
-
\(36d+90\)
42. \(18⋅\frac{5}{6}(15h+24)\)
43. \(r(s−18)\)
- Jibu
-
\(rs−18r\)
44. \(u(v−10)\)
45. \((y+4)p\)
- Jibu
-
\(yp+4p\)
46. \((a+7)x\)
47. \(−7(4p+1)\)
- Jibu
-
\(−28p−7\)
48. \(−9(9a+4)\)
49. \(−3(x−6)\)
- Jibu
-
\(−3x+18\)
50. \(−4(q−7)\)
51. \(−(3x−7)\)
- Jibu
-
\(−3x+7\)
52. \(−(5p−4)\)
53. \(16−3(y+8)\)
- Jibu
-
\(−3y−8\)
54. \(18−4(x+2)\)
55. \(4−11(3c−2)\)
- Jibu
-
\(−33c+26\)
56. \(9−6(7n−5)\)
57. \(22−(a+3)\)
- Jibu
-
\(−a+19\)
58. \(8−(r−7)\)
59. \((5m−3)−(m+7)\)
- Jibu
-
\(4m−10\)
60. \((4y−1)−(y−2)\)
61. \(9(8x−3)−(−2)\)
- Jibu
-
\(72x−25\)
62. \(4(6x−1)−(−8)\)
63. \(5(2n+9)+12(n−3)\)
- Jibu
-
\(22n+9\)
64. \(9(5u+8)+2(u−6)\)
65. \(14(c−1)−8(c−6)\)
- Jibu
-
\(6c+34\)
66. \(11(n−7)−5(n−1)\)
67. \(6(7y+8)−(30y−15)\)
- Jibu
-
\(12y+63\)
68. \(7(3n+9)−(4n−13)\)
Mazoezi ya kuandika
69. Kwa maneno yako mwenyewe, sema Mali ya Associative ya kuongeza.
- Jibu
-
Majibu yatatofautiana.
70. Ni tofauti gani kati ya inverse ya kuongezea na inverse ya multiplicative ya idadi
71. Kurahisisha\(8(x−\frac{1}{4})\) kutumia Mali Distributive na kueleza kila hatua.
- Jibu
-
Majibu yatatofautiana.
72. Eleza jinsi unavyoweza kuzidisha\(4($5.97)\) bila karatasi au calculator kwa kufikiria\($5.97\) kama\(6−0.03\) na kisha kutumia Mali ya Usambazaji.
Self Check
Baada ya kukamilisha mazoezi, tumia orodha hii ili kutathmini ujuzi wako wa malengo ya sehemu hii.
b Baada ya kuchunguza orodha hii, utafanya nini ili uwe na ujasiri kwa malengo yote?