1.6: Mali ya Hesabu halisi
Mwishoni mwa sehemu hii, utaweza:
- Tumia mali za kubadilisha na za ushirika
- Tumia mali ya utambulisho, inverse, na sifuri
- Kurahisisha maneno kwa kutumia Mali ya Mgawanyo
Tumia Mali za Comutative na Associative
Ili sisi kuongeza namba mbili haiathiri matokeo. Kama sisi kuongeza8+9 au9+8, matokeo ni sawa-wote wawili sawa 17. Kwa hiyo,8+9=9+8. Utaratibu ambao tunaongeza haijalishi!
Vile vile, wakati wa kuzidisha namba mbili, utaratibu hauathiri matokeo. Kama sisi8·9 kuzidisha9·8 au matokeo ni sawa-wote wawili sawa 72. Kwa hiyo,9·8=8·9. Utaratibu ambao tunazidisha haijalishi! Mifano hii inaonyesha Mali Comutative.
of AdditionIf a and bare real numbers, thena+b=b+a.of MultiplicationIf a and bare real numbers, thena·b=b·a.
Wakati wa kuongeza au kuzidisha, kubadilisha utaratibu hutoa matokeo sawa.
Mali Comutative ina nini na utaratibu. Sisi Ondoa9−8 na8−9, na kuona kwamba9−8≠8−9. Kwa kuwa kubadilisha utaratibu wa uondoaji haitoi matokeo sawa, tunajua kwamba uondoaji sio kubadilisha.
Idara si commutative ama. Tangu12÷3≠3÷12, kubadilisha utaratibu wa mgawanyiko hakutoa matokeo sawa. Mali ya kubadilisha hutumika tu kwa kuongeza na kuzidisha!
- Kuongezea na kuzidisha ni commutative.
- Kutoa na mgawanyiko sio kubadilisha.
Wakati wa kuongeza namba tatu, kubadilisha kikundi cha nambari hutoa matokeo sawa. Kwa mfano,(7+8)+2=7+(8+2), tangu kila upande wa equation sawa 17.
Hii ni kweli kwa kuzidisha, pia. Kwa mfano,(5·13)·3=5·(13·3), tangu kila upande wa equation sawa 5.
Mifano hii inaonyesha Mali Associative.
of AdditionIf a,b, and c are real numbers, then(a+b)+c=a+(b+c).of MultiplicationIf a,b, and c are real numbers, then(a·b)·c=a·(b·c).
Wakati wa kuongeza au kuzidisha, kubadilisha kikundi hutoa matokeo sawa.
Mali ya Associative inahusiana na kikundi. Ikiwa tunabadilisha jinsi namba zimeunganishwa, matokeo yatakuwa sawa. Taarifa ni sawa namba tatu katika utaratibu sawa-tofauti tu ni kambi.
Tuliona kwamba uondoaji na mgawanyiko haukuwa wa kubadilisha. Wao si associative aidha.
(10−3)−2≠10−(3−2)(24÷4)÷2≠24÷(4÷2)7−2≠10−16÷2≠24÷25≠93≠12
Wakati wa kurahisisha maneno, daima ni wazo nzuri kupanga mipango gani itakuwa. Ili kuchanganya maneno kama hayo katika mfano unaofuata, tutatumia Mali ya Kubadilisha ya kuongeza kuandika maneno kama hayo pamoja.
Kurahisisha:18p+6q+15p+5q.
- Jibu
-
18p+6q+15p+5qUse the Commutative Property of addition to18p+15p+6q+5qreorder so that like terms are together.Add like terms.33p+11q
Kurahisisha:23r+14s+9r+15s.
- Jibu
-
32r+29s
Kurahisisha:37m+21n+4m−15n.
- Jibu
-
41m+6n
Tunapopaswa kurahisisha maneno ya algebraic, mara nyingi tunaweza kufanya kazi iwe rahisi kwa kutumia Mali ya Commutative au Mali Associative kwanza.
Kurahisisha:(513+34)+14.
- Jibu
-
(513+34)+14Notice that the last 2 terms have a commondenominator, so change the grouping.513+(34+14)Add in parentheses first.513+(44)Simplify the fraction.513+1Add.1513Convert to an improper fraction.1813
Kurahisisha:(715+58)+38.
- Jibu
-
1715
Kurahisisha:(29+712)+512.
- Jibu
-
129
Tumia Mali ya Identity, Inverse, na Zero
Nini kinatokea wakati sisi kuongeza 0 kwa idadi yoyote? Kuongeza 0 haina mabadiliko ya thamani. Kwa sababu hii, tunaita 0 utambulisho wa kuongezea. Identity Mali ya Aidha kwamba inasema kwamba kwa idadi yoyote halisia,a+0=a na0+a=a.
Nini kinatokea wakati sisi kuzidisha idadi yoyote kwa moja? Kuongezeka kwa 1 haina mabadiliko ya thamani. Hivyo tunaita 1 utambulisho multiplicative. Mali ya Utambulisho wa Kuzidisha ambayo inasema kwamba kwa idadi yoyote halisia,a·1=a na1⋅a=a.
Sisi muhtasari Mali Identity hapa.
of Addition For any real number a:a+0=a0+a=a0 is the additive identityof Multiplication For any real number a:a·1=a1·a=a1 is the multiplicative identity
Nini idadi aliongeza kwa 5 anatoa livsmedelstillsats utambulisho, 0? Tunajua
Nambari ya kukosa ilikuwa kinyume cha idadi!
Sisi wito−a inverse livsmedelstillsats yaa. Kinyume cha nambari ni inverse yake ya kuongezea. Nambari na kinyume chake huongeza sifuri, ambayo ni utambulisho wa kuongezea. Hii inasababisha Mali Inverse ya Aidha kwamba inasema kwa idadi yoyote halisia,a+(−a)=0.
Nini idadi tele na23 anatoa utambulisho multiplicative, 1? Kwa maneno mengine,23 mara nini matokeo katika 1? Tunajua
Nambari ya kukosa ilikuwa ya kawaida ya idadi!
Tunatoa1a wito inverse multiplicative ya. Utoaji wa nambari ni inverse yake ya kuzidisha. Hii inasababisha Mali Inverse ya Kuzidisha ambayo inasema kwamba kwa idadi yoyote halisia,a≠0,a·1a=1.
Tutaweza rasmi hali mali inverse hapa.
of additionFor any real number a,a+(−a)=0−a is the additive inverse of aA number and its opposite add to zero.of multiplication For any real number a,a≠0a·1a=11a is the multiplicative inverse of aA number and its reciprocal multiply to one.
Identity Mali ya kuongeza anasema kwamba wakati sisi kuongeza 0 kwa idadi yoyote, matokeo ni kwamba idadi sawa. Nini kinatokea wakati sisi kuzidisha idadi kwa 0? Kuongezeka kwa 0 hufanya bidhaa sawa na sifuri.
Nini kuhusu mgawanyiko kuwashirikisha sifuri? Ni nini0÷3? Fikiria juu ya mfano halisi: Ikiwa hakuna cookies katika jar ya kuki na watu 3 watawashirikisha, ni vidakuzi ngapi ambavyo kila mtu hupata? Hakuna vidakuzi vya kushiriki, hivyo kila mtu anapata cookies 0. Hivyo,0÷3=0.
Tunaweza kuangalia mgawanyiko na kuhusiana kuzidisha ukweli. Hivyo tunajua0÷3=0 kwa sababu0·3=0.
Sasa fikiria juu ya kugawa na sifuri. Matokeo ya kugawa 4 na 0 ni nini? Fikiria juu ya ukweli unaohusiana na kuzidisha:
Je, kuna idadi kwamba tele kwa 0 anatoa 4? Kwa kuwa idadi yoyote halisi tele kwa 0 anatoa 0, hakuna idadi halisi ambayo inaweza kuzidishwa na 0 kupata 4. Tunahitimisha kuwa hakuna jibu kwa4÷0 na hivyo tunasema kuwa mgawanyiko na 0 haujafafanuliwa.
Sisi muhtasari mali ya sifuri hapa.
Kuzidisha na Zero: Kwa yoyote ya kweli idadi a,
a⋅0=00⋅a=0The product of any number and 0 is 0.
Idara na Zero: Kwa yoyote ya kweli idadi a,a≠0
0a=0Zero divided by any real number, except itself, is zero.a0 is undefinedDivision by zero is undefined.
Sasa tutatumia kutumia mali ya utambulisho, inverses, na sifuri ili kurahisisha maneno.
Kurahisisha:−84n+(−73n)+84n.
- Jibu
-
−84n+(−73n)+84nNotice that the first and third terms areopposites; use the Commutative Property of−84n+84n+(−73n)addition to re-order the terms.Add left to right.0+(−73n)Add.−73n
Kurahisisha:−27a+(−48a)+27a.
- Jibu
-
−48a
Kurahisisha:39x+(−92x)+(−39x).
- Jibu
-
−92x
Sasa tutaona jinsi kutambua usawa ni muhimu. Kabla ya kuzidisha kushoto kwenda kulia, angalia kurudisha-bidhaa zao ni 1.
Kurahisisha:715⋅823⋅157.
- Jibu
-
715⋅823⋅157Notice the first and third termsare reciprocals, so use the CommutativeProperty of multiplication to re-order thefactors.715·157·823Multiply left to right.1·823Multiply.823
Kurahisisha:916⋅549⋅169.
- Jibu
-
549
Kurahisisha:617⋅1125⋅176.
- Jibu
-
1125
Mfano unaofuata unatufanya tufahamu wa tofauti kati ya kugawa 0 kwa idadi fulani au idadi fulani ikigawanywa na 0.
Kurahisisha: a.0n+5, ambapon≠−5 b.10−3p0 wapi10−3p≠0.
- Jibu
-
a.
0n+5Zero divided by any real number except itself is 0.0
b.
10−3p0Division by 0 is undefined.undefined
Kurahisisha: a.0m+7, ambapom≠−7 b.18−6c0, wapi18−6c≠0.
- Jibu
-
a. 0 b.
haijulikani
Kurahisisha: a.0d−4, ambapod≠4 b.15−4q0, wapi15−4q≠0.
- Jibu
-
a. 0 b.
haijulikani
Kurahisisha Maneno Kutumia Mali ya Usambazaji
Tuseme kwamba marafiki watatu wanaenda kwenye sinema. Kila mmoja anahitaji $9.25 - hiyo ni dola 9 na robo-1 kulipa tiketi zao. Ni kiasi gani cha fedha wanahitaji wote pamoja?
Unaweza kufikiri juu ya dola tofauti na robo. Wanahitaji mara 3 $9 hivyo $27 na 3 mara 1 robo, hivyo senti 75. Kwa jumla, wanahitaji $27.75. Ikiwa unafikiri juu ya kufanya hesabu kwa njia hii, unatumia Mali ya Usambazaji.
If a,b,and care real numbers, thena(b+c)=ab+ac(b+c)a=ba+caa(b−c)=ab−ac(b−c)a=ba−ca
Katika algebra, tunatumia Mali Distributive kuondoa mabano kama sisi kurahisisha maneno.
Kurahisisha:3(x+4).
- Jibu
-
3(x+4)Distribute.3·x+3·4Multiply.3x+12
Kurahisisha:4(x+2).
- Jibu
-
4x8
Kurahisisha:6(x+7).
- Jibu
-
6x42
Wanafunzi wengine wanaona ni muhimu kuteka mishale kuwakumbusha jinsi ya kutumia Mali ya Usambazaji. Kisha hatua ya kwanza katika Mfano ingeonekana kama hii:
Kurahisisha:8(38x+14).
- Jibu
-
Kusambaza. Kuzidisha.
Kurahisisha:6(56y+12).
- Jibu
-
5y+3
Kurahisisha:12(13n+34)
- Jibu
-
4n+9
Kutumia Mali ya Usambazaji kama inavyoonekana katika mfano unaofuata itakuwa muhimu sana wakati tunatatua maombi ya fedha katika sura za baadaye.
Kurahisisha:100(0.3+0.25q).
- Jibu
-
Kusambaza. Kuzidisha.
Kurahisisha:100(0.7+0.15p).
- Jibu
-
70+15p
Kurahisisha:100(0.04+0.35d).
- Jibu
-
4+35d
Tunaposambaza namba hasi, tunahitaji kuwa makini zaidi ili kupata ishara sahihi!
Kurahisisha:−11(4−3a).
- Jibu
-
−11(4−3a)Distribute. −11·4−(−11)·3aMultiply.−44−(−33a)Simplify.−44+33a
Kumbuka kwamba unaweza pia kuandika matokeo kama33a−44. Unajua kwa nini?
Kurahisisha:−5(2−3a).
- Jibu
-
−10+15a
Kurahisisha:−7(8−15y).
- Jibu
-
−56+105y
Katika mfano unaofuata, tutaonyesha jinsi ya kutumia Mali ya Mgawanyo ili kupata kinyume cha maneno.
Kurahisisha:−(y+5).
- Jibu
-
−(y+5)Multiplying by −1 results in the opposite.−1(y+5)Distribute.−1·y+(−1)·5Simplify.−y+(−5)Simplify.−y−5
Kurahisisha:−(z−11).
- Jibu
-
−z+11
Kurahisisha:−(x−4).
- Jibu
-
−x+4
Kutakuwa na nyakati ambapo tutahitaji kutumia Mali Distributive kama sehemu ya utaratibu wa shughuli. Anza kwa kuangalia mabano. Ikiwa maneno ndani ya mabano hayawezi kurahisishwa, hatua inayofuata itakuwa kuzidisha kwa kutumia Mali ya Mgawanyo, ambayo huondoa mabano. Mifano miwili ijayo itaonyesha hili.
Kurahisisha:8−2(x+3)
- Jibu
-
Tunafuata utaratibu wa shughuli. Kuzidisha huja kabla ya kuondoa, kwa hiyo tutasambaza 2 kwanza na kisha tuondoe.
8−2(x+3)Distribute.8−2·x−2·3Multiply.8−2x−6Combine like terms.−2x+2
Kurahisisha:9−3(x+2).
- Jibu
-
3−3x
Kurahisisha:7x−5(x+4).
- Jibu
-
2x−20
Kurahisisha:4(x−8)−(x+3).
- Jibu
-
4(x−8)−(x+3)Distribute.4x−32−x−3Combine like terms.3x−35
Kurahisisha:6(x−9)−(x+12).
- Jibu
-
5x−66
Kurahisisha:8(x−1)−(x+5).
- Jibu
-
7x−13
Mali yote ya namba halisi tumetumia katika sura hii ni muhtasari hapa.
Comutative Mali
Wakati wa kuongeza au kuzidisha, kubadilisha utaratibu hutoa matokeo sawa of AdditionIf a and bare real numbers, thena+b=b+a.of MultiplicationIf a and bare real numbers, thena·b=b·a. |
Associative Mali
Wakati wa kuongeza au kuzidisha, kubadilisha kikundi hutoa matokeo sawa. of AdditionIf a,b, and c are real numbers, then(a+b)+c=a+(b+c).of MultiplicationIf a,b, and c are real numbers, then(a·b)·c=a·(b·c). |
Mali ya Kusambaza
If a,b,and care real numbers, thena(b+c)=ab+ac(b+c)a=ba+caa(b−c)=ab−ac(b−c)a=ba−ca |
Mali ya Identity of Addition For any real number a:a+0=a0+a=a0 is the additive identityof Multiplication For any real number a:a·1=a1·a=a1 is the multiplicative identity |
Inverse Mali
of addition For any real number a,a+(−a)=0−a is the additive inverse of aA number and its opposite add to zero.of multiplication For any real number a,a≠0a·1a=11a is the multiplicative inverse of aA number and its reciprocal multiply to one. |
Mali ya Zero For any real number a,a·0=00·a=0For any real number a,a≠0,0a=0For any real number a,a0 is undefined |
Dhana muhimu
Mali ya kubadilisha Wakati wa kuongeza au kuzidisha, kubadilisha utaratibu hutoa matokeo sawa of AdditionIf a and bare real numbers, thena+b=b+a.of MultiplicationIf a and bare real numbers, thena·b=b·a. |
Mali ya Associative Wakati wa kuongeza au kuzidisha, kubadilisha kikundi hutoa matokeo sawa. of AdditionIf a,b, and c are real numbers, then(a+b)+c=a+(b+c).of MultiplicationIf a,b, and c are real numbers, then(a·b)·c=a·(b·c). |
Mali ya Kusambaza
If a,b,and care real numbers, thena(b+c)=ab+ac(b+c)a=ba+caa(b−c)=ab−ac(b−c)a=ba−ca |
Mali ya Identity
of Addition For any real number a:a+0=a0+a=a0 is the additive identityof Multiplication For any real number a:a·1=a1·a=a1 is the multiplicative identity |
Inverse Mali
of additionFor any real number a,a+(−a)=0−a is the additive inverse of aA number and its opposite add to zero.of multiplication For any real number a,a≠0a·1a=11a is the multiplicative inverse of aA number and its reciprocal multiply to one. |
Mali ya Zero
For any real number a,a·0=00·a=0For any real number a,a≠0,0a=0For any real number a,a0 is undefined |
faharasa
- utambulisho wa nyongeza
- Nambari 0 ni utambulisho wa kuongezea kwa sababu kuongeza 0 kwa nambari yoyote haibadili thamani yake.
- nyongeza inverse
- Kinyume cha nambari ni inverse yake ya kuongezea.
- utambulisho wa kuzidisha
- Nambari ya 1 ni utambulisho wa kuzidisha kwa sababu kuzidisha 1 kwa namba yoyote hakubadilisha thamani yake.
- inverse ya kuzidisha
- Utoaji wa nambari ni inverse yake ya kuzidisha.