Sura ya 1 Mazoezi Mapitio
- Page ID
- 176190
Sura ya Mapitio ya mazoezi
Tumia Lugha ya Algebra
Tambua Multiples na Mambo
1. Tumia vipimo vya mgawanyiko ili kuamua kama 180 inagawanyika na 2, na 3, na 5, na 6, na kwa 10.
- Jibu
-
Imegawanyika na\(2,3,5,6\)
2. Kupata factorization mkuu wa 252.
3. Kupata angalau ya kawaida nyingi ya 24 na 40.
- Jibu
-
120
Katika mazoezi yafuatayo, kurahisisha kila kujieleza.
4. \(24÷3+4(5−2)\)
5. \(7+3[6−4(5−4)]−3^2\)
- Jibu
-
4
Tathmini ya Kuelezea
Katika mazoezi yafuatayo, tathmini maneno yafuatayo.
6. Wakati\(x=4\), ⓐ \(x^3\) ⓑ \(5x\) ⓒ \(2x^2−5x+3\)
7. \(2x^2−4xy−3y^2\)lini\(x=3\) na\(y=1\)
- Jibu
-
3
Katika mazoezi yafuatayo, kurahisisha maneno yafuatayo kwa kuchanganya maneno kama hayo.
8. \(12y+7+2y−5\)
9. \(14x^2−9x+11−8x^2+8x−6\)
- Jibu
-
\(6x^2−x+5\)
Tafsiri Maneno ya Kiingereza kwa kujieleza kwa Kialgebraic
Katika mazoezi yafuatayo, tafsiri maneno katika maneno ya algebraic.
10. ⓐ jumla ya\(4ab^2\)\(7a3b24ab^2\) na\(7a^3b^2\)
ⓑ bidhaa ya\(6y^2\) na\(3y\)
ⓒ kumi na mbili zaidi\(5x\)
ⓓ\(5y\) chini ya\(8y^2\)
11. ⓐ mara kumi na moja tofauti ya\(y\) na mbili
ⓑ tofauti ya mara kumi na moja\(y\) na mbili
- Jibu
-
ⓐ\(11(y−2)\)
ⓑ\(11y−2\)
12. Dushko ina nickels na pennies katika mfuko wake. Idadi ya pennies ni nne chini ya tano idadi ya nickels. Hebu nn kuwakilisha idadi ya nickels. Andika maneno kwa idadi ya pennies.
Nambari kamili
Kurahisisha Maneno na Thamani kamili
Katika zoezi zifuatazo, jaza\(<,>,\) au\(=\) kwa kila jozi zifuatazo za namba.
13. ⓐ\(−|7| \_\_\_−|−7|\)
ⓑ\(−8 \_\_\_−|−8|\)
ⓒ\(|−13| \_\_\_−13\)
ⓓ\(|−12| \_\_\_−(−12)\)
- Jibu
-
ⓐ\(=\)
ⓑ\(=\)
ⓒ\(>\)
ⓓ\(=\)
Katika mazoezi yafuatayo, kurahisisha.
14. \(9−|3(4−8)|\)
15. \(12−3|1−4(4−2)|\)
- Jibu
-
\(−9\)
Kuongeza na Ondoa Integers
Katika mazoezi yafuatayo, kurahisisha kila kujieleza.
16. \(−12+(−8)+7\)
ⓑ\(−15−(−7)\)
ⓒ\(−15−7\)
ⓓ\(15−(−7)\)
- Jibu
-
ⓐ\(8\)
ⓑ\(−8\)
ⓒ\(−22\)
ⓓ\(22\)
18. \(−11−(−12)+5\)
19. ⓐ\(23−(−17)\) ⓑ\(23+17\)
- Jibu
-
ⓐ 40 ⓑ 40
20. \(−(7−11)−(3−5)\)
Kuzidisha na Gawanya Integers
Katika zoezi zifuatazo, kuzidisha au kugawanya.
21. ⓐ\(−27÷9\) ⓑ\(120÷(−8)\) ⓒ\(4(−14)\) ⓓ\(−1(−17)\)
- Jibu
-
ⓐ\(−3\) ⓑ\(−15\) ⓒ\(−56\) ⓓ\(17\)
Kurahisisha na Tathmini Maneno na Integers
Katika mazoezi yafuatayo, kurahisisha kila kujieleza.
22. ⓐ\((−7)^3\) ⓑ\(−7^3\)
23. \((7−11)(6−13)\)
- Jibu
-
16
24. \(63÷(−9)+(−36)÷(−4)\)
25. \(6−3|4(1−2)−(7−5)|\)
- Jibu
-
\(−12\)
26. \((−2)^4−24÷(13−5)\)
27. \((y+z)^2\)lini\(y=−4\) na\(z=7\)
- Jibu
-
9
28. \(3x^2−2xy+4y^2\)lini\(x=−2\) na\(y=−3\)
Katika mazoezi yafuatayo, tafsiri kwa kujieleza kwa algebraic na kurahisisha ikiwa inawezekana.
29. jumla ya\(−4\) na\(−9\), iliongezeka kwa\(23\)
- Jibu
-
\((−4+(−9))+23;10\)
30. ⓐ tofauti ya 17 na -8 ⓑ Ondoa 17 kutoka -25
Tumia Integers katika Maombi
Katika zoezi zifuatazo, tatua.
31. Joto Mnamo Julai 10, halijoto ya juu huko Phoenix, Arizona, ilikuwa 109°, na halijoto ya juu mnamo Juneau, Alaska, ilikuwa 63°. Ni tofauti gani kati ya joto katika Palm Springs na joto huko Whitefield?
- Jibu
-
\(46°\)
FRACTIONS
Kurahisisha Fractions
Katika mazoezi yafuatayo, kurahisisha.
32. \(\dfrac{204}{228}\)
33. \(−\dfrac{270x^3}{198y^2}\)
- Jibu
-
\(−\dfrac{15x^3}{11y^2}\)
Kuzidisha na Kugawanya sehemu
Katika mazoezi yafuatayo, fanya operesheni iliyoonyeshwa.
34. \(\left(−\dfrac{14}{15}\right)\left(\dfrac{10}{21}\right)\)
35. \(\dfrac{6x}{25}÷\dfrac{9y}{20}\)
- Jibu
-
\(\dfrac{8x}{15y}\)
36. \(\dfrac{−\frac{4}{9}}{\dfrac{8}{21}}\)
Ongeza na Ondoa sehemu
Katika mazoezi yafuatayo, fanya operesheni iliyoonyeshwa.
37. \(\dfrac{5}{18}+\dfrac{7}{12}\)
- Jibu
-
\(\dfrac{31}{36}\)
38. \(\dfrac{11}{36}−\dfrac{15}{48}\)
39. ⓐ\(\dfrac{5}{8}+\dfrac{3}{4}\) ⓑ\(\dfrac{5}{8}÷\dfrac{3}{4}\)
- Jibu
-
ⓐ\(\dfrac{11}{8}\) ⓑ\(\dfrac{5}{6}\)
40. ⓐ\(−\dfrac{3y}{10}−\dfrac{5}{6}\) ⓑ\(−\dfrac{3y}{10}·\dfrac{5}{6}\)
Tumia Utaratibu wa Uendeshaji ili kurahisisha Fractions
Katika mazoezi yafuatayo, kurahisisha.
41. \(\dfrac{4·3−2·5}{−6·3+2·3}\)
- Jibu
-
\(−\dfrac{1}{6}\)
42. \(\dfrac{4(7−3)−2(4−9)}{−3(4+2)+7(3−6)}\)
43. \(\dfrac{4^3−4^2}{(\dfrac{4}{5})^2}\)
- Jibu
-
75
Tathmini Maneno ya kutofautiana na FRACTIONS
Katika mazoezi yafuatayo, tathmini.
44. \(4x^2y^2\)lini\(x=\dfrac{2}{3}\) na\(y=−\dfrac{3}{4}\)
45. \(\dfrac{a+b}{a−b}\)lini\(a=−4\) na\(b=6\)
- Jibu
-
\(−15\)
Desimali
Decimals pande zote
46. \(6.738\)Pande zote kwa karibu ⓐ mia ⓑ kumi ⓒ idadi nzima.
Kuongeza na Ondoa Decimals
Katika mazoezi yafuatayo, fanya operesheni iliyoonyeshwa.
47. \(−23.67+29.84\)
- Jibu
-
\(6.17\)
48. \(54.3−100\)
49. \(79.38−(−17.598)\)
- Jibu
-
\(96.978\)
Kuzidisha na Gawanya Decimals
Katika mazoezi yafuatayo, fanya operesheni iliyoonyeshwa.
50. \((−2.8)(3.97)\)
51. \((−8.43)(−57.91)\)
- Jibu
-
488.1813
52. \((53.48)(10)\)
53. \((0.563)(100)\)
- Jibu
-
\(56.3\)
54. \( \$ 118.35÷2.6\)
55. \(1.84÷(−0.8)\)
- Jibu
-
\(−23\)
Geuza Decimals, Fractions na asilimia
Katika mazoezi yafuatayo, andika kila decimal kama sehemu.
56. \(\dfrac{13}{20}\)
57. \(−\dfrac{240}{25}\)
- Jibu
-
\(−9.6\)
Katika mazoezi yafuatayo, kubadilisha kila sehemu kwa decimal.
58. \(−\dfrac{5}{8}\)
59. \(\dfrac{14}{11}\)
- Jibu
-
\(1.\overline{27}\)
Katika mazoezi yafuatayo, kubadilisha kila decimal kwa asilimia.
60. \(2.43\)
61. \(0.0475\)
- Jibu
-
\(4.75 \% \)
Punguza Maneno na Mizizi ya Mraba
Katika mazoezi yafuatayo, kurahisisha.
62. \(\sqrt{289}\)
63. \(\sqrt{−121}\)
- Jibu
-
hakuna idadi halisi
Tambua Integers, Nambari za busara, Hesabu zisizofaa, na Hesabu halisi
Katika zoezi zifuatazo, orodha ya ⓐ namba nzima ⓑ integers ⓒ namba za busara ⓓ namba zisizo na maana ⓔ namba halisi kwa kila seti ya namba
64. \(−8,0,1.95286...,\dfrac{12}{5},\sqrt{36},9\)
Pata sehemu ndogo na Decimals kwenye Mstari wa Idadi
Katika mazoezi yafuatayo, Pata namba kwenye mstari wa nambari.
65. \(\dfrac{3}{4},−\dfrac{3}{4},1\dfrac{1}{3},−1\dfrac{2}{3},\dfrac{7}{2},−\dfrac{5}{2}\)
- Jibu
66. ⓐ\(3.2\) ⓑ\(−1.35\)
Mali ya Hesabu halisi
Tumia Mali za Comutative na Associative
Katika mazoezi yafuatayo, kurahisisha.
67. \(\dfrac{5}{8}x+\dfrac{5}{12}y+\dfrac{1}{8}x+\dfrac{7}{12}y\)
- Jibu
-
\(\dfrac{3}{4}x+y\)
68. \(−32·9·\dfrac{5}{8}\)
69. \(\left(\dfrac{11}{15}+\dfrac{3}{8}\right)+\dfrac{5}{8}\)
- Jibu
-
\(1\dfrac{11}{15}\)
Tumia Mali ya Identity, Inverse na Zero
Katika mazoezi yafuatayo, kurahisisha.
70. \(\dfrac{4}{7}+\dfrac{8}{15}+\left(−\dfrac{4}{7}\right)\)
71. \(\dfrac{13}{15}·\dfrac{9}{17}·\dfrac{15}{13}\)
- Jibu
-
\(\dfrac{9}{17}\)
72. \(\dfrac{0}{x−3},x\neq 3\)
73. \(\dfrac{5x−7}{0},5x−7\neq 0\)
- Jibu
-
haijafafanuliwa
Kurahisisha Maneno Kutumia Mali ya Usambazaji
Katika mazoezi yafuatayo, kurahisisha kutumia Mali ya Usambazaji.
74. \(8(a−4)\)
75. \(12\left(\dfrac{2}{3}b+\dfrac{5}{6}\right)\)
- Jibu
-
\(8b+10\)
76. \(18·\dfrac{5}{6}(2x−5)\)
77. \((x−5)p\)
- Jibu
-
\(xp−5p\)
78. \(−4(y−3)\)
79. \(12−6(x+3)\)
- Jibu
-
\(−6x−6\)
80. \(6(3x−4)−(−5)\)
81. \(5(2y+3)−(4y−1)\)
- Jibu
-
\(y+16\)
Mazoezi mtihani
1. Kupata factorization mkuu wa\(756\).
2. Kuchanganya kama maneno:\(5n+8+2n−1\)
- Jibu
-
\(7n+7\)
3. Tathmini lini\(x=−2\) na\(y=3: \dfrac{|3x−4y|}{6}\)
4. Tafsiri kwa kujieleza algebraic na kurahisisha:
ⓐ kumi na moja chini ya nane hasi
ⓑ tofauti ya\(−8\) na\(−3\), iliongezeka kwa 5
- Jibu
-
\(−8−11 = −19\)
\((−8−(−3))+5 = 0\)
5. Dushko ina nickels na pennies katika mfuko wake. Idadi ya pennies ni saba chini ya mara nne idadi ya nickels. Hebu nn kuwakilisha idadi ya nickels. Andika maneno kwa idadi ya pennies.
6. \(28.1458\)Pande zote kwa karibu
ⓐ mia ⓑ elfu
- Jibu
-
ⓐ\(28.15\) ⓑ\(28.146\)
7. Geuza
ⓐ\(\dfrac{5}{11}\) kwa decimal ⓑ\(1.15\) kwa asilimia
8. Machapisho\(\dfrac{3}{5},2.8,and−\dfrac{5}{2}\) kwenye mstari namba.
- Jibu
Katika mazoezi yafuatayo, kurahisisha kila kujieleza.
9. \(8+3[6−3(5−2)]−4^2\)
10. \(−(4−9)−(9−5)\)
- Jibu
-
1
11. \(56÷(−8)+(−27)÷(−3)\)
12. \(16−2|3(1−4)−(8−5)|\)
- Jibu
-
\(−8\)
13. \(−5+2(−3)^2−9\)
14. \(\dfrac{180}{204}\)
- Jibu
-
\(\dfrac{15}{17}\)
15. \(−\dfrac{7}{18}+\dfrac{5}{12}\)
16. \(\dfrac{4}{5}÷(−\dfrac{12}{25})\)
- Jibu
-
\(−\dfrac{5}{3}\)
17. \(\dfrac{9−3·9}{15−9}\)
18. \(\dfrac{4(−3+2(3−6))}{3(11−3(2+3))}\)
- Jibu
-
\(3\)
19. \(\dfrac{5}{13}⋅\dfrac{4}{7}⋅\dfrac{13}{5}\)
20. \(\dfrac{−\dfrac{5}{9}}{\dfrac{10}{21}}\)
- Jibu
-
\(−\dfrac{7}{6}\)
21. \(−4.8+(−6.7)\)
22. \(34.6−100\)
- Jibu
-
\(−65.4\)
23. \(−12.04⋅(4.2)\)
24. \(−8÷0.05\)
- Jibu
-
160
25. \(−\sqrt{121}\)
26. \((\dfrac{8}{13}+\dfrac{5}{7})+\dfrac{2}{7}\)
- Jibu
-
\(1\dfrac{8}{13}\)
27. \(5x+(−8y)−6x+3y\)
28. ⓐ\(\dfrac{0}{9}\) ⓑ\(\dfrac{11}{0}\)
- Jibu
-
ⓐ 0 ⓑ haijafafanuliwa
29. \(−3(8x−5)\)
30. \(6(3y−1)−(5y−3)\)
- Jibu
-
\(13y−3\)