Skip to main content
Global

Sura ya 1 Mazoezi Mapitio

  • Page ID
    176190
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Sura ya Mapitio ya mazoezi

    Tumia Lugha ya Algebra

    Tambua Multiples na Mambo

    1. Tumia vipimo vya mgawanyiko ili kuamua kama 180 inagawanyika na 2, na 3, na 5, na 6, na kwa 10.

    Jibu

    Imegawanyika na\(2,3,5,6\)

    2. Kupata factorization mkuu wa 252.

    3. Kupata angalau ya kawaida nyingi ya 24 na 40.

    Jibu

    120

    Katika mazoezi yafuatayo, kurahisisha kila kujieleza.

    4. \(24÷3+4(5−2)\)

    5. \(7+3[6−4(5−4)]−3^2\)

    Jibu

    4

    Tathmini ya Kuelezea

    Katika mazoezi yafuatayo, tathmini maneno yafuatayo.

    6. Wakati\(x=4\), ⓐ \(x^3\)\(5x\)\(2x^2−5x+3\)

    7. \(2x^2−4xy−3y^2\)lini\(x=3\) na\(y=1\)

    Jibu

    3

    Kurahisisha Maneno kwa Kuchanganya Kama Masharti

    Katika mazoezi yafuatayo, kurahisisha maneno yafuatayo kwa kuchanganya maneno kama hayo.

    8. \(12y+7+2y−5\)

    9. \(14x^2−9x+11−8x^2+8x−6\)

    Jibu

    \(6x^2−x+5\)

    Tafsiri Maneno ya Kiingereza kwa kujieleza kwa Kialgebraic

    Katika mazoezi yafuatayo, tafsiri maneno katika maneno ya algebraic.

    10. ⓐ jumla ya\(4ab^2\)\(7a3b24ab^2\) na\(7a^3b^2\)

    ⓑ bidhaa ya\(6y^2\) na\(3y\)

    ⓒ kumi na mbili zaidi\(5x\)

    \(5y\) chini ya\(8y^2\)

    11. ⓐ mara kumi na moja tofauti ya\(y\) na mbili

    ⓑ tofauti ya mara kumi na moja\(y\) na mbili

    Jibu

    \(11(y−2)\)
    \(11y−2\)

    12. Dushko ina nickels na pennies katika mfuko wake. Idadi ya pennies ni nne chini ya tano idadi ya nickels. Hebu nn kuwakilisha idadi ya nickels. Andika maneno kwa idadi ya pennies.

    Nambari kamili

    Kurahisisha Maneno na Thamani kamili

    Katika zoezi zifuatazo, jaza\(<,>,\) au\(=\) kwa kila jozi zifuatazo za namba.

    13. ⓐ\(−|7| \_\_\_−|−7|\)

    \(−8 \_\_\_−|−8|\)

    \(|−13| \_\_\_−13\)

    \(|−12| \_\_\_−(−12)\)

    Jibu

    \(=\)
    \(=\)
    \(>\)
    \(=\)

    Katika mazoezi yafuatayo, kurahisisha.

    14. \(9−|3(4−8)|\)

    15. \(12−3|1−4(4−2)|\)

    Jibu

    \(−9\)

    Kuongeza na Ondoa Integers

    Katika mazoezi yafuatayo, kurahisisha kila kujieleza.

    16. \(−12+(−8)+7\)

    17. ⓐ\(15−7\)

    \(−15−(−7)\)

    \(−15−7\)

    \(15−(−7)\)

    Jibu

    \(8\)
    \(−8\)
    \(−22\)
    \(22\)

    18. \(−11−(−12)+5\)

    19. ⓐ\(23−(−17)\)\(23+17\)

    Jibu

    ⓐ 40 ⓑ 40

    20. \(−(7−11)−(3−5)\)

    Kuzidisha na Gawanya Integers

    Katika zoezi zifuatazo, kuzidisha au kugawanya.

    21. ⓐ\(−27÷9\)\(120÷(−8)\)\(4(−14)\)\(−1(−17)\)

    Jibu

    \(−3\)\(−15\)\(−56\)\(17\)

    Kurahisisha na Tathmini Maneno na Integers

    Katika mazoezi yafuatayo, kurahisisha kila kujieleza.

    22. ⓐ\((−7)^3\)\(−7^3\)

    23. \((7−11)(6−13)\)

    Jibu

    16

    24. \(63÷(−9)+(−36)÷(−4)\)

    25. \(6−3|4(1−2)−(7−5)|\)

    Jibu

    \(−12\)

    26. \((−2)^4−24÷(13−5)\)

    Kwa mazoezi yafuatayo, tathmini kila kujieleza.

    27. \((y+z)^2\)lini\(y=−4\) na\(z=7\)

    Jibu

    9

    28. \(3x^2−2xy+4y^2\)lini\(x=−2\) na\(y=−3\)

    Tafsiri Maneno ya Kiingereza kwa Maneno ya Algebraic

    Katika mazoezi yafuatayo, tafsiri kwa kujieleza kwa algebraic na kurahisisha ikiwa inawezekana.

    29. jumla ya\(−4\) na\(−9\), iliongezeka kwa\(23\)

    Jibu

    \((−4+(−9))+23;10\)

    30. ⓐ tofauti ya 17 na -8 ⓑ Ondoa 17 kutoka -25

    Tumia Integers katika Maombi

    Katika zoezi zifuatazo, tatua.

    31. Joto Mnamo Julai 10, halijoto ya juu huko Phoenix, Arizona, ilikuwa 109°, na halijoto ya juu mnamo Juneau, Alaska, ilikuwa 63°. Ni tofauti gani kati ya joto katika Palm Springs na joto huko Whitefield?

    Jibu

    \(46°\)

    FRACTIONS

    Kurahisisha Fractions

    Katika mazoezi yafuatayo, kurahisisha.

    32. \(\dfrac{204}{228}\)

    33. \(−\dfrac{270x^3}{198y^2}\)

    Jibu

    \(−\dfrac{15x^3}{11y^2}\)

    Kuzidisha na Kugawanya sehemu

    Katika mazoezi yafuatayo, fanya operesheni iliyoonyeshwa.

    34. \(\left(−\dfrac{14}{15}\right)\left(\dfrac{10}{21}\right)\)

    35. \(\dfrac{6x}{25}÷\dfrac{9y}{20}\)

    Jibu

    \(\dfrac{8x}{15y}\)

    36. \(\dfrac{−\frac{4}{9}}{\dfrac{8}{21}}\)

    Ongeza na Ondoa sehemu

    Katika mazoezi yafuatayo, fanya operesheni iliyoonyeshwa.

    37. \(\dfrac{5}{18}+\dfrac{7}{12}\)

    Jibu

    \(\dfrac{31}{36}\)

    38. \(\dfrac{11}{36}−\dfrac{15}{48}\)

    39. ⓐ\(\dfrac{5}{8}+\dfrac{3}{4}\)\(\dfrac{5}{8}÷\dfrac{3}{4}\)

    Jibu

    \(\dfrac{11}{8}\)\(\dfrac{5}{6}\)

    40. ⓐ\(−\dfrac{3y}{10}−\dfrac{5}{6}\)\(−\dfrac{3y}{10}·\dfrac{5}{6}\)

    Tumia Utaratibu wa Uendeshaji ili kurahisisha Fractions

    Katika mazoezi yafuatayo, kurahisisha.

    41. \(\dfrac{4·3−2·5}{−6·3+2·3}\)

    Jibu

    \(−\dfrac{1}{6}\)

    42. \(\dfrac{4(7−3)−2(4−9)}{−3(4+2)+7(3−6)}\)

    43. \(\dfrac{4^3−4^2}{(\dfrac{4}{5})^2}\)

    Jibu

    75

    Tathmini Maneno ya kutofautiana na FRACTIONS

    Katika mazoezi yafuatayo, tathmini.

    44. \(4x^2y^2\)lini\(x=\dfrac{2}{3}\) na\(y=−\dfrac{3}{4}\)

    45. \(\dfrac{a+b}{a−b}\)lini\(a=−4\) na\(b=6\)

    Jibu

    \(−15\)

    Desimali

    Decimals pande zote

    46. \(6.738\)Pande zote kwa karibu ⓐ mia ⓑ kumi ⓒ idadi nzima.

    Kuongeza na Ondoa Decimals

    Katika mazoezi yafuatayo, fanya operesheni iliyoonyeshwa.

    47. \(−23.67+29.84\)

    Jibu

    \(6.17\)

    48. \(54.3−100\)

    49. \(79.38−(−17.598)\)

    Jibu

    \(96.978\)

    Kuzidisha na Gawanya Decimals

    Katika mazoezi yafuatayo, fanya operesheni iliyoonyeshwa.

    50. \((−2.8)(3.97)\)

    51. \((−8.43)(−57.91)\)

    Jibu

    488.1813

    52. \((53.48)(10)\)

    53. \((0.563)(100)\)

    Jibu

    \(56.3\)

    54. \( \$ 118.35÷2.6\)

    55. \(1.84÷(−0.8)\)

    Jibu

    \(−23\)

    Geuza Decimals, Fractions na asilimia

    Katika mazoezi yafuatayo, andika kila decimal kama sehemu.

    56. \(\dfrac{13}{20}\)

    57. \(−\dfrac{240}{25}\)

    Jibu

    \(−9.6\)

    Katika mazoezi yafuatayo, kubadilisha kila sehemu kwa decimal.

    58. \(−\dfrac{5}{8}\)

    59. \(\dfrac{14}{11}\)

    Jibu

    \(1.\overline{27}\)

    Katika mazoezi yafuatayo, kubadilisha kila decimal kwa asilimia.

    60. \(2.43\)

    61. \(0.0475\)

    Jibu

    \(4.75 \% \)

    Punguza Maneno na Mizizi ya Mraba

    Katika mazoezi yafuatayo, kurahisisha.

    62. \(\sqrt{289}\)

    63. \(\sqrt{−121}\)

    Jibu

    hakuna idadi halisi

    Tambua Integers, Nambari za busara, Hesabu zisizofaa, na Hesabu halisi

    Katika zoezi zifuatazo, orodha ya ⓐ namba nzima ⓑ integers ⓒ namba za busara ⓓ namba zisizo na maana ⓔ namba halisi kwa kila seti ya namba

    64. \(−8,0,1.95286...,\dfrac{12}{5},\sqrt{36},9\)

    Pata sehemu ndogo na Decimals kwenye Mstari wa Idadi

    Katika mazoezi yafuatayo, Pata namba kwenye mstari wa nambari.

    65. \(\dfrac{3}{4},−\dfrac{3}{4},1\dfrac{1}{3},−1\dfrac{2}{3},\dfrac{7}{2},−\dfrac{5}{2}\)

    Jibu

    Kielelezo kinaonyesha mstari wa nambari na namba zinazoanzia minus 4 hadi 4. Baadhi ya maadili yanaonyeshwa.

    66. ⓐ\(3.2\)\(−1.35\)

    Mali ya Hesabu halisi

    Tumia Mali za Comutative na Associative

    Katika mazoezi yafuatayo, kurahisisha.

    67. \(\dfrac{5}{8}x+\dfrac{5}{12}y+\dfrac{1}{8}x+\dfrac{7}{12}y\)

    Jibu

    \(\dfrac{3}{4}x+y\)

    68. \(−32·9·\dfrac{5}{8}\)

    69. \(\left(\dfrac{11}{15}+\dfrac{3}{8}\right)+\dfrac{5}{8}\)

    Jibu

    \(1\dfrac{11}{15}\)

    Tumia Mali ya Identity, Inverse na Zero

    Katika mazoezi yafuatayo, kurahisisha.

    70. \(\dfrac{4}{7}+\dfrac{8}{15}+\left(−\dfrac{4}{7}\right)\)

    71. \(\dfrac{13}{15}·\dfrac{9}{17}·\dfrac{15}{13}\)

    Jibu

    \(\dfrac{9}{17}\)

    72. \(\dfrac{0}{x−3},x\neq 3\)

    73. \(\dfrac{5x−7}{0},5x−7\neq 0\)

    Jibu

    haijafafanuliwa

    Kurahisisha Maneno Kutumia Mali ya Usambazaji

    Katika mazoezi yafuatayo, kurahisisha kutumia Mali ya Usambazaji.

    74. \(8(a−4)\)

    75. \(12\left(\dfrac{2}{3}b+\dfrac{5}{6}\right)\)

    Jibu

    \(8b+10\)

    76. \(18·\dfrac{5}{6}(2x−5)\)

    77. \((x−5)p\)

    Jibu

    \(xp−5p\)

    78. \(−4(y−3)\)

    79. \(12−6(x+3)\)

    Jibu

    \(−6x−6\)

    80. \(6(3x−4)−(−5)\)

    81. \(5(2y+3)−(4y−1)\)

    Jibu

    \(y+16\)

    Mazoezi mtihani

    1. Kupata factorization mkuu wa\(756\).

    2. Kuchanganya kama maneno:\(5n+8+2n−1\)

    Jibu

    \(7n+7\)

    3. Tathmini lini\(x=−2\) na\(y=3: \dfrac{|3x−4y|}{6}\)

    4. Tafsiri kwa kujieleza algebraic na kurahisisha:

    ⓐ kumi na moja chini ya nane hasi

    ⓑ tofauti ya\(−8\) na\(−3\), iliongezeka kwa 5

    Jibu

    \(−8−11 = −19\)
    \((−8−(−3))+5 = 0\)

    5. Dushko ina nickels na pennies katika mfuko wake. Idadi ya pennies ni saba chini ya mara nne idadi ya nickels. Hebu nn kuwakilisha idadi ya nickels. Andika maneno kwa idadi ya pennies.

    6. \(28.1458\)Pande zote kwa karibu

    ⓐ mia ⓑ elfu

    Jibu

    \(28.15\)\(28.146\)

    7. Geuza

    \(\dfrac{5}{11}\) kwa decimal ⓑ\(1.15\) kwa asilimia

    8. Machapisho\(\dfrac{3}{5},2.8,and−\dfrac{5}{2}\) kwenye mstari namba.

    Jibu

    alt

    Katika mazoezi yafuatayo, kurahisisha kila kujieleza.

    9. \(8+3[6−3(5−2)]−4^2\)

    10. \(−(4−9)−(9−5)\)

    Jibu

    1

    11. \(56÷(−8)+(−27)÷(−3)\)

    12. \(16−2|3(1−4)−(8−5)|\)

    Jibu

    \(−8\)

    13. \(−5+2(−3)^2−9\)

    14. \(\dfrac{180}{204}\)

    Jibu

    \(\dfrac{15}{17}\)

    15. \(−\dfrac{7}{18}+\dfrac{5}{12}\)

    16. \(\dfrac{4}{5}÷(−\dfrac{12}{25})\)

    Jibu

    \(−\dfrac{5}{3}\)

    17. \(\dfrac{9−3·9}{15−9}\)

    18. \(\dfrac{4(−3+2(3−6))}{3(11−3(2+3))}\)

    Jibu

    \(3\)

    19. \(\dfrac{5}{13}⋅\dfrac{4}{7}⋅\dfrac{13}{5}\)

    20. \(\dfrac{−\dfrac{5}{9}}{\dfrac{10}{21}}\)

    Jibu

    \(−\dfrac{7}{6}\)

    21. \(−4.8+(−6.7)\)

    22. \(34.6−100\)

    Jibu

    \(−65.4\)

    23. \(−12.04⋅(4.2)\)

    24. \(−8÷0.05\)

    Jibu

    160

    25. \(−\sqrt{121}\)

    26. \((\dfrac{8}{13}+\dfrac{5}{7})+\dfrac{2}{7}\)

    Jibu

    \(1\dfrac{8}{13}\)

    27. \(5x+(−8y)−6x+3y\)

    28. ⓐ\(\dfrac{0}{9}\)\(\dfrac{11}{0}\)

    Jibu

    ⓐ 0 ⓑ haijafafanuliwa

    29. \(−3(8x−5)\)

    30. \(6(3y−1)−(5y−3)\)

    Jibu

    \(13y−3\)