Skip to main content
Global

4.6E: Exercícios

  • Page ID
    183154
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A prática leva à perfeição

    Escreva a matriz aumentada para um sistema de equações

    Nos exercícios a seguir, escreva cada sistema de equações lineares como uma matriz aumentada.

    \(\left\{ \begin{array} {l} 3x−y=−1\\ 2y=2x+5\end{array} \right.\)
    \(\left\{ \begin{array} {l} 4x+3y=−2\\ x−2y−3z=7 \\ 2x−y+2z=−6 \end{array} \right.\)

    \(\left\{ \begin{array} {l} 2x+4y=−5\\ 3x−2y=2\end{array} \right.\)
    \(\left\{ \begin{array} {l} 3x−2y−z=−2\\ −2x+y=5 \\ 5x+4y+z=−1 \end{array} \right.\)

    Responda

    \(\left[ \begin{matrix} 2 &4 &−5 \\ 3 &−2 &2 \end{matrix} \right]\)
    \(\left[ \begin{matrix} 3 &−2 &−1 &−2 \\ −2 &1 &0 &5 \\ 5 &4 &1 &−1 \end{matrix} \right]\)

    \(\left\{ \begin{array} {l} 3x−y=−4 \\ 2x=y+2 \end{array} \right.\)
    \(\left\{ \begin{array} {l} x−3y−4z=−2 \\ 4x+2y+2z=5 \\ 2x−5y+7z=−8 \end{array} \right.\)

    \(\left\{ \begin{array} {l} 2x−5y=−3 \\ 4x=3y−1 \end{array} \right.\)
    \(\left\{ \begin{array} {l} 4x+3y−2z=−3 \\ −2x+y−3z=4 \\ −x−4y+5z=−2 \end{array} \right.\)

    Responda

    \(\left[ \begin{matrix} 2 &−5 &−3 \\ 4 &−3 &−1 \end{matrix} \right]\)
    \(\left[ \begin{matrix} 4 &3 &−2 &−3 \\ −2 &1 &−3 &4 \\ −1 &−4 &5 &−2 \end{matrix} \right]\)

    Escreva o sistema de equações que corresponde à matriz aumentada.

    \(\left[ \begin{array} {cc|c} 2 &−1 &4 \\ 1 &−3 &2 \end{array} \right]\)

    \(\left[ \begin{array} {cc|c} 2 &−4 &-2 \\ 3 &−3 &-1 \end{array} \right]\)

    Responda

    \(\left\{ \begin{array} {l} 2x−4y=−2 \\ 3x−3y=−1 \end{array} \right.\)

    \(\left[ \begin{array} {ccc|c} 1 &0 &−3 &-1 \\ 1 &−2 &0 &-2 \\ 0 &−1 &2 &3 \end{array} \right]\)

    \(\left[ \begin{array} {ccc|c} 2 &−2 &0 &-1 \\ 0 &2 &−1 &2 \\ 3 &0 &−1 &-2 \end{array} \right]\)

    Responda

    \(\left\{ \begin{array} {l} 2x−2y=−1 \\ 2y−z=2 \\ 3x−z=−2 \end{array} \right.\)

    Use operações de linha em uma matriz

    Nos exercícios a seguir, execute as operações indicadas nas matrizes aumentadas.

    \(\left[ \begin{array} {cc|c} 6 &−4 &3 \\ 3 &−2 &1 \end{array} \right]\)

    ⓐ Troque as linhas 1 e 2

    ⓑ Multiplique a linha 2 por 3

    ⓒ Multiplique a linha 2 por\(−2\) e adicione a linha 1 a ela.

    \(\left[ \begin{array} {cc|c} 4 &−6 &-3 \\ 3 &2 &1 \end{array} \right]\)

    ⓐ Troque as linhas 1 e 2

    ⓑ Multiplique a linha 1 por 4

    ⓒ Multiplique a linha 2 por 3 e adicione a linha 1 a ela.

    Responda

    \(\left[ \begin{matrix} 3 &2 &1 \\ 4 &−6 &−3 \end{matrix} \right]\)
    \(\left[ \begin{matrix} 12 &8 &4 \\ 4 &−6 &−3 \end{matrix} \right]\)
    \(\left[ \begin{matrix} 12 &8 &4 \\ 24 &−10 &−5 \end{matrix} \right]\)

    \(\left[ \begin{array} {ccc|c} 4 &−12 &−8 &16 \\ 4 &−2 &−3 &-1 \\ −6 &2 &−1 &-1 \end{array} \right]\)

    \(\left[ \begin{array} {ccc|c} 6 &−5 &2 &3 \\ 2 &1 &−4 &5 \\ 3 &−3 &1 &-1 \end{array} \right]\)

    Responda

    \(\left[ \begin{matrix} 2 &1 &−4 &5 \\ 6 &−5 &2 &3 \\ 3 &−3 &1 &−1 \end{matrix} \right]\)
    \(\left[ \begin{matrix} 2 &1 &−4 &5 \\ 6 &−5 &2 &3 \\ 3 &−3 &1 &−1 \end{matrix} \right]\)
    \(\left[ \begin{matrix} 2 &1 &−4 &5 \\ 6 &−5 &2 &3 \\ −4 &7 &−6 &7 \end{matrix} \right]\)

    Execute a operação de linha necessária que fará com que a primeira entrada na linha 2 seja zero na matriz aumentada:\(\left[ \begin{array} {cc|c} 1 &2 &5 \\ −3 &−4 &-1 \end{array} \right]\)

    Execute as operações de linha necessárias para que a primeira entrada na linha 2 e na linha 3 seja zero na matriz aumentada:\(\left[ \begin{array} {ccc|c} 1 &−2 &3 &-4 \\ 3 &−1 &−2 &5 \\ 2 &−3 &−4 &1 \end{array} \right]\)

    Responda

    \(\left[ \begin{matrix} 1 &−2 &3 &−4 \\ 0 &5 &−11 &17 \\ 0 &1 &−10 &7 \end{matrix} \right]\)

    Resolva sistemas de equações usando matrizes

    Nos exercícios a seguir, resolva cada sistema de equações usando uma matriz.

    \(\left\{ \begin{array} {l} 2x+y=2 \\ x−y=−2 \end{array} \right.\)

    \(\left\{ \begin{array} {l} 3x+y=2 \\ x−y=2 \end{array} \right.\)

    Responda

    \((1,−1)\)

    \(\left\{ \begin{array} {l} −x+2y=−2 \\ x+y=−4 \end{array} \right.\)

    \(\left\{ \begin{array} {l} −2x+3y=3 \\ x+3y=12 \end{array} \right.\)

    Responda

    \((3,3)\)

    Nos exercícios a seguir, resolva cada sistema de equações usando uma matriz.

    \(\left\{ \begin{array} {l} 2x−3y+z=19 \\ −3x+y−2z=−1 \\ 5x+y+z=0 \end{array} \right.\)

    \(\left\{ \begin{array} {l} 2x−y+3z=−3 \\ −x+2y−z=10 \\ x+y+z=5 \end{array} \right.\)

    Responda

    \((−2,5,2)\)

    \(\left\{ \begin{array} {l} 2x−6y+z=3 \\ 3x+2y−3z=2 \\ 2x+3y−2z=3 \end{array} \right.\)

    \(\left\{ \begin{array} {l} 4x−3y+z=7 \\ 2x−5y−4z=3 \\ 3x−2y−2z=−7 \end{array} \right.\)

    Responda

    \((−3,−5,4)\)

    \(\left\{ \begin{array} {l} x+2z=0 \\ 4y+3z=−2 \\ 2x−5y=3 \end{array} \right.\)

    \(\left\{ \begin{array} {l} 2x+5y=4 \\ 3y−z=3 \\ 4x+3z=−3 \end{array} \right.\)

    Responda

    \((−3,2,3)\)

    \(\left\{ \begin{array} {l} 2y+3z=−1 \\ 5x+3y=−6 \\ 7x+z=1 \end{array} \right.\)

    \(\left\{ \begin{array} {l} 3x−z=−3 \\ 5y+2z=−6 \\ 4x+3y=−8 \end{array} \right.\)

    Responda

    \((−2,0,−3)\)

    \(\left\{ \begin{array} {l} 2x+3y+z=1 \\ 2x+y+z=9 \\ 3x+4y+2z=20 \end{array} \right.\)

    \(\left\{ \begin{array} {l} x+2y+6z=5 \\ −x+y−2z=3 \\ x−4y−2z=1 \end{array} \right.\)

    Responda

    sem solução

    \(\left\{ \begin{array} {l} x+2y−3z=−1 \\ x−3y+z=1 \\ 2x−y−2z=2 \end{array} \right.\)

    \(\left\{ \begin{array} {l} 4x−3y+2z=0 \\ −2x+3y−7z=1 \\ 2x−2y+3z=6 \end{array} \right.\)

    Responda

    sem solução

    \(\left\{ \begin{array} {l} x−y+2z=−4 \\ 2x+y+3z=2 \\ −3x+3y−6z=12 \end{array} \right.\)

    \(\left\{ \begin{array} {l} −x−3y+2z=14 \\ −x+2y−3z=−4 \\ 3x+y−2z=6 \end{array} \right.\)

    Responda

    infinitamente muitas soluções\((x,y,z)\) onde\(x=12z+4;\space y=12z−6;\space z\) está qualquer número real

    \(\left\{ \begin{array} {l} x+y−3z=−1 \\ y−z=0 \\ −x+2y=1 \end{array} \right.\)

    \(\left\{ \begin{array} {l} x+2y+z=4 \\ x+y−2z=3 \\ −2x−3y+z=−7 \end{array} \right.\)

    Responda

    infinitamente muitas soluções\((x,y,z)\) onde\(x=5z+2;\space y=−3z+1;\space z\) está qualquer número real

    exercícios de escrita

    Resolva o sistema de equações\(\left\{ \begin{array} {l} x+y=10 \\ x−y=6\end{array} \right.\) ⓐ representando graficamente e ⓑ por substituição. ⓒ Qual método você prefere? Por quê?

    Resolva o sistema de equações\(\left\{ \begin{array} {l} 3x+y=1 \\ 2x=y−8 \end{array} \right.\) por substituição e explique todos os seus passos em palavras.

    Responda

    As respostas podem variar.

    Verificação automática

    ⓐ Depois de concluir os exercícios, use esta lista de verificação para avaliar seu domínio dos objetivos desta seção.

    Esta tabela tem 4 colunas, 5 linhas e uma linha de cabeçalho. A linha do cabeçalho rotula cada coluna que eu posso, com confiança, com alguma ajuda e não, eu não entendo. A primeira coluna tem as seguintes afirmações: Escreva a matriz aumentada para um sistema de equações, Use operações de linha em uma matriz, Resolva sistemas de equações usando matrizes, Escreva a matriz aumentada para um sistema de equações, Use operações de linha em uma matriz. As colunas restantes estão em branco.

    ⓑ Depois de ver a lista de verificação, você acha que está bem preparado para a próxima seção? Por que ou por que não?