Chapitre 8 Exercices de révision
- Page ID
- 194317
Exercices de révision des
Simplifiez les expressions grâce aux
Dans les exercices suivants, simplifiez.
-
- \(\sqrt{225}\)
- \(-\sqrt{16}\)
-
- \(-\sqrt{169}\)
- \(\sqrt{-8}\)
-
- \(\sqrt[3]{8}\)
- \(\sqrt[4]{81}\)
- \(\sqrt[5]{243}\)
-
- \(\sqrt[3]{-512}\)
- \(\sqrt[4]{-81}\)
- \(\sqrt[5]{-1}\)
- Réponse
-
1.
- \(15\)
- \(-4\)
3.
- \(2\)
- \(3\)
- \(3\)
Dans les exercices suivants, estimez chaque racine entre deux nombres entiers consécutifs.
-
- \(\sqrt{68}\)
- \(\sqrt[3]{84}\)
- Réponse
-
1.
- \(8<\sqrt{68}<9\)
- \(4<\sqrt[3]{84}<5\)
Dans les exercices suivants, approximez chaque racine et arrondissez à deux décimales.
-
- \(\sqrt{37}\)
- \(\sqrt[3]{84}\)
- \(\sqrt[4]{125}\)
- Réponse
-
1. Résolvez vous-même
Dans les exercices suivants, simplifiez l'utilisation de valeurs absolues si nécessaire.
-
- \(\sqrt[3]{a^{3}}\)
- \(\sqrt[7]{b^{7}}\)
-
- \(\sqrt{a^{14}}\)
- \(\sqrt{w^{24}}\)
-
- \(\sqrt[4]{m^{8}}\)
- \(\sqrt[5]{n^{20}}\)
-
- \(\sqrt{121 m^{20}}\)
- \(-\sqrt{64 a^{2}}\)
-
- \(\sqrt[3]{216 a^{6}}\)
- \(\sqrt[5]{32 b^{20}}\)
-
- \(\sqrt{144 x^{2} y^{2}}\)
- \(\sqrt{169 w^{8} y^{10}}\)
- \(\sqrt[3]{8 a^{51} b^{6}}\)
- Réponse
-
1.
- \(a\)
- \(|b|\)
3.
- \(m^{2}\)
- \(n^{4}\)
5.
- \(6a^{2}\)
- \(2b^{4}\)
Simplifier les expressions
Dans les exercices suivants, utilisez la propriété Product pour simplifier les expressions radicales.
- \(\sqrt{125}\)
- \(\sqrt{675}\)
-
- \(\sqrt[3]{625}\)
- \(\sqrt[6]{128}\)
- Réponse
-
1. \(5\sqrt{5}\)
3.
- \(5 \sqrt[3]{5}\)
- \(2 \sqrt[6]{2}\)
Dans les exercices suivants, simplifiez l'utilisation des signes de valeur absolue selon vos besoins.
-
- \(\sqrt{a^{23}}\)
- \(\sqrt[3]{b^{8}}\)
- \(\sqrt[8]{c^{13}}\)
-
- \(\sqrt{80 s^{15}}\)
- \(\sqrt[5]{96 a^{7}}\)
- \(\sqrt[6]{128 b^{7}}\)
-
- \(\sqrt{96 r^{3} s^{3}}\)
- \(\sqrt[3]{80 x^{7} y^{6}}\)
- \(\sqrt[4]{80 x^{8} y^{9}}\)
-
- \(\sqrt[5]{-32}\)
- \(\sqrt[8]{-1}\)
-
- \(8+\sqrt{96}\)
- \(\frac{2+\sqrt{40}}{2}\)
- Réponse
-
2.
- \(4\left|s^{7}\right| \sqrt{5 s}\)
- \(2 a \sqrt[5]{3 a^{2}}\)
- \(2|b| \sqrt[6]{2 b}\)
4.
- \(-2\)
- pas réel
Dans les exercices suivants, utilisez la propriété Quotient pour simplifier les racines carrées.
-
- \(\sqrt{\frac{72}{98}}\)
- \(\sqrt[3]{\frac{24}{81}}\)
- \(\sqrt[4]{\frac{6}{96}}\)
-
- \(\sqrt{\frac{y^{4}}{y^{8}}}\)
- \(\sqrt[5]{\frac{u^{21}}{u^{11}}}\)
- \(\sqrt[6]{\frac{v^{30}}{v^{12}}}\)
- \(\sqrt{\frac{300 m^{5}}{64}}\)
-
- \(\sqrt{\frac{28 p^{7}}{q^{2}}}\)
- \(\sqrt[3]{\frac{81 s^{8}}{t^{3}}}\)
- \(\sqrt[4]{\frac{64 p^{15}}{q^{12}}}\)
-
- \(\sqrt{\frac{27 p^{2} q}{108 p^{4} q^{3}}}\)
- \(\sqrt[3]{\frac{16 c^{5} d^{7}}{250 c^{2} d^{2}}}\)
- \(\sqrt[6]{\frac{2 m^{9} n^{7}}{128 m^{3} n}}\)
-
- \(\frac{\sqrt{80 q^{5}}}{\sqrt{5 q}}\)
- \(\frac{\sqrt[3]{-625}}{\sqrt[3]{5}}\)
- \(\frac{\sqrt[4]{80 m^{7}}}{\sqrt[4]{5 m}}\)
- Réponse
-
1.
- \(\frac{6}{7}\)
- \(\frac{2}{3}\)
- \(\frac{1}{2}\)
3. \(\frac{10 m^{2} \sqrt{3 m}}{8}\)
5.
- \(\frac{1}{2|p q|}\)
- \(\frac{2 c d \sqrt[5]{2 d^{2}}}{5}\)
- \(\frac{|m n| \sqrt[6]{2}}{2}\)
Simplifier les exposants rati
Dans les exercices suivants, écrivez comme une expression radicale.
-
- \(r^{\frac{1}{2}}\)
- \(s^{\frac{1}{3}}\)
- \(t^{\frac{1}{4}}\)
- Réponse
-
1.
- \(\sqrt{r}\)
- \(\sqrt[3]{s}\)
- \(\sqrt[4]{t}\)
Dans les exercices suivants, écrivez avec un exposant rationnel.
-
- \(\sqrt{21p}\)
- \(\sqrt[4]{8q}\)
- \(4\sqrt[6]{36r}\)
- Réponse
-
1. Résolvez vous-même
Dans les exercices suivants, simplifiez.
-
- \(625^{\frac{1}{4}}\)
- \(243^{\frac{1}{5}}\)
- \(32^{\frac{1}{5}}\)
-
- \((-1,000)^{\frac{1}{3}}\)
- \(-1,000^{\frac{1}{3}}\)
- \((1,000)^{-\frac{1}{3}}\)
-
- \((-32)^{\frac{1}{5}}\)
- \((243)^{-\frac{1}{5}}\)
- \(-125^{\frac{1}{3}}\)
- Réponse
-
1.
- \(5\)
- \(3\)
- \(2\)
3.
- \(-2\)
- \(\frac{1}{3}\)
- \(-5\)
Dans les exercices suivants, écrivez avec un exposant rationnel.
-
- \(\sqrt[4]{r^{7}}\)
- \((\sqrt[5]{2 p q})^{3}\)
- \(\sqrt[4]{\left(\frac{12 m}{7 n}\right)^{3}}\)
- Réponse
-
1. Résolvez vous-même
Dans les exercices suivants, simplifiez.
-
- \(25^{\frac{3}{2}}\)
- \(9^{-\frac{3}{2}}\)
- \((-64)^{\frac{2}{3}}\)
-
- \(-64^{\frac{3}{2}}\)
- \(-64^{-\frac{3}{2}}\)
- \((-64)^{\frac{3}{2}}\)
- Réponse
-
1.
- \(125\)
- \(\frac{1}{27}\)
- \(16\)
Dans les exercices suivants, simplifiez.
-
- \(6^{\frac{5}{2}} \cdot 6^{\frac{1}{2}}\)
- \(\left(b^{15}\right)^{\frac{3}{5}}\)
- \(\frac{w^{\frac{2}{7}}}{w^{\frac{9}{7}}}\)
-
- \(\frac{a^{\frac{3}{4}} \cdot a^{-\frac{1}{4}}}{a^{-\frac{10}{4}}}\)
- \(\left(\frac{27 b^{\frac{2}{3}} c^{-\frac{5}{2}}}{b^{-\frac{7}{3}} c^{\frac{1}{2}}}\right)^{\frac{1}{3}}\)
- Réponse
-
1.
- \(6^{3}\)
- \(b^{9}\)
- \(\frac{1}{w}\)
Ajouter, soustraire et multiplier des expressions radicales
Dans les exercices suivants, simplifiez.
-
- \(7 \sqrt{2}-3 \sqrt{2}\)
- \(7 \sqrt[3]{p}+2 \sqrt[3]{p}\)
- \(5 \sqrt[3]{x}-3 \sqrt[3]{x}\)
-
- \(\sqrt{11 b}-5 \sqrt{11 b}+3 \sqrt{11 b}\)
- \(8 \sqrt[4]{11 c d}+5 \sqrt[4]{11 c d}-9 \sqrt[4]{11 c d}\)
-
- \(\sqrt{48}+\sqrt{27}\)
- \(\sqrt[3]{54}+\sqrt[3]{128}\)
- \(6 \sqrt[4]{5}-\frac{3}{2} \sqrt[4]{320}\)
-
- \(\sqrt{80 c^{7}}-\sqrt{20 c^{7}}\)
- \(2 \sqrt[4]{162 r^{10}}+4 \sqrt[4]{32 r^{10}}\)
- \(3 \sqrt{75 y^{2}}+8 y \sqrt{48}-\sqrt{300 y^{2}}\)
- Réponse
-
1.
- \(4\sqrt{2}\)
- \(9\sqrt[3]{p}\)
- \(2\sqrt[3]{x}\)
3.
- \(7\sqrt{3}\)
- \(7\sqrt[3]{2}\)
- \(3\sqrt[4]{5}\)
5. \(37 y \sqrt{3}\)
Dans les exercices suivants, simplifiez.
-
- \((5 \sqrt{6})(-\sqrt{12})\)
- \((-2 \sqrt[4]{18})(-\sqrt[4]{9})\)
-
- \(\left(3 \sqrt{2 x^{3}}\right)\left(7 \sqrt{18 x^{2}}\right)\)
- \(\left(-6 \sqrt[3]{20 a^{2}}\right)\left(-2 \sqrt[3]{16 a^{3}}\right)\)
- Réponse
-
2.
- \(126 x^{2} \sqrt{2}\)
- \(48 a \sqrt[3]{a^{2}}\)
Dans les exercices suivants, multipliez.
-
- \(\sqrt{11}(8+4 \sqrt{11})\)
- \(\sqrt[3]{3}(\sqrt[3]{9}+\sqrt[3]{18})\)
-
- \((3-2 \sqrt{7})(5-4 \sqrt{7})\)
- \((\sqrt[3]{x}-5)(\sqrt[3]{x}-3)\)
- \((2 \sqrt{7}-5 \sqrt{11})(4 \sqrt{7}+9 \sqrt{11})\)
-
- \((4+\sqrt{11})^{2}\)
- \((3-2 \sqrt{5})^{2}\)
- \((7+\sqrt{10})(7-\sqrt{10})\)
- \((\sqrt[3]{3 x}+2)(\sqrt[3]{3 x}-2)\)
- Réponse
-
2.
- \(71-22 \sqrt{7}\)
- \(\sqrt[3]{x^{2}}-8 \sqrt[3]{x}+15\)
4.
- \(27+8 \sqrt{11}\)
- \(29-12 \sqrt{5}\)
6. \(\sqrt[3]{9 x^{2}}-4\)
Divisez les expressions
Dans les exercices suivants, simplifiez.
-
- \(\frac{\sqrt{48}}{\sqrt{75}}\)
- \(\frac{\sqrt[3]{81}}{\sqrt[3]{24}}\)
-
- \(\frac{\sqrt{320 m n^{-5}}}{\sqrt{45 m^{-7} n^{3}}}\)
- \(\frac{\sqrt[3]{16 x^{4} y^{-2}}}{\sqrt[3]{-54 x^{-2} y^{4}}}\)
- Réponse
-
2.
- \(\frac{8 m^{4}}{3 n^{4}}\)
- \(-\frac{x^{2}}{2 y^{2}}\)
Dans les exercices suivants, rationalisez le dénominateur.
-
- \(\frac{8}{\sqrt{3}}\)
- \(\sqrt{\frac{7}{40}}\)
- \(\frac{8}{\sqrt{2 y}}\)
-
- \(\frac{1}{\sqrt[3]{11}}\)
- \(\sqrt[3]{\frac{7}{54}}\)
- \(\frac{3}{\sqrt[3]{3 x^{2}}}\)
-
- \(\frac{1}{\sqrt[4]{4}}\)
- \(\sqrt[4]{\frac{9}{32}}\)
- \(\frac{6}{\sqrt[4]{9 x^{3}}}\)
- Réponse
-
2.
- \(\frac{\sqrt[3]{121}}{11}\)
- \(\frac{\sqrt[3]{28}}{6}\)
- \(\frac{\sqrt[3]{9 x}}{x}\)
Dans les exercices suivants, simplifiez.
- \(\frac{7}{2-\sqrt{6}}\)
- \(\frac{\sqrt{5}}{\sqrt{n}-\sqrt{7}}\)
- \(\frac{\sqrt{x}+\sqrt{8}}{\sqrt{x}-\sqrt{8}}\)
- Réponse
-
1. \(-\frac{7(2+\sqrt{6})}{2}\)
3. \(\frac{(\sqrt{x}+2 \sqrt{2})^{2}}{x-8}\)
Résoudre des équations
Dans les exercices suivants, résolvez.
- \(\sqrt{4 x-3}=7\)
- \(\sqrt{5 x+1}=-3\)
- \(\sqrt[3]{4 x-1}=3\)
- \(\sqrt{u-3}+3=u\)
- \(\sqrt[3]{4 x+5}-2=-5\)
- \((8 x+5)^{\frac{1}{3}}+2=-1\)
- \(\sqrt{y+4}-y+2=0\)
- \(2 \sqrt{8 r+1}-8=2\)
- Réponse
-
2. aucune solution
4. \(u=3, u=4\)
6. \(x=-4\)
8. \(r=3\)
Dans les exercices suivants, résolvez.
- \(\sqrt{10+2 c}=\sqrt{4 c+16}\)
- \(\sqrt[3]{2 x^{2}+9 x-18}=\sqrt[3]{x^{2}+3 x-2}\)
- \(\sqrt{r}+6=\sqrt{r+8}\)
- \(\sqrt{x+1}-\sqrt{x-2}=1\)
- Réponse
-
2. \(x=-8, x=2\)
4. \(x=3\)
Dans les exercices suivants, résolvez. Arrondissez les approximations à une décimale.
- Landscaping Reed veut avoir un terrain de jardin carré dans son jardin. Il dispose de suffisamment de compost pour couvrir une superficie de pieds\(75\) carrés. Utilisez la formule\(s=\sqrt{A}\) pour trouver la longueur de chaque côté de son jardin. Arrondissez vos réponses au dixième de pied le plus proche.
- Enquête sur un accident Un enquêteur a mesuré les marques de dérapage de l'un des véhicules impliqués dans un accident. La longueur des marques de dérapage était de\(175\) pieds. Utilisez la formule\(s=\sqrt{24d}\) pour déterminer la vitesse du véhicule avant que les freins ne soient actionnés. Arrondissez votre réponse au dixième le plus proche.
- Réponse
-
2. \(64.8\)pieds
Utiliser des radicaux dans les fonctions
Dans les exercices suivants, évaluez chaque fonction.
- \(g(x)=\sqrt{6 x+1}\), trouvez
- \(g(4)\)
- \(g(8)\)
- \(G(x)=\sqrt{5 x-1}\), trouvez
- \(G(5)\)
- \(G(2)\)
- \(h(x)=\sqrt[3]{x^{2}-4}\), trouvez
- \(h(-2)\)
- \(h(6)\)
- Pour la fonction\(g(x)=\sqrt[4]{4-4 x}\), trouvez
- \(g(1)\)
- \(g(-3)\)
- Réponse
-
2.
- \(G(5)=2 \sqrt{6}\)
- \(G(2)=3\)
4.
- \(g(1)=0\)
- \(g(-3)=2\)
Dans les exercices suivants, trouvez le domaine de la fonction et écrivez le domaine en notation par intervalles.
- \(g(x)=\sqrt{2-3 x}\)
- \(F(x)=\sqrt{\frac{x+3}{x-2}}\)
- \(f(x)=\sqrt[3]{4 x^{2}-16}\)
- \(F(x)=\sqrt[4]{10-7 x}\)
- Réponse
-
2. \((2, \infty)\)
4. \(\left[\frac{7}{10}, \infty\right)\)
Dans les exercices suivants,
- trouvez le domaine de la fonction
- représenter graphiquement la fonction
- utilisez le graphique pour déterminer la plage
- \(g(x)=\sqrt{x+4}\)
- \(g(x)=2 \sqrt{x}\)
- \(f(x)=\sqrt[3]{x-1}\)
- \(f(x)=\sqrt[3]{x}+3\)
- Réponse
-
2.
- domaine :\([0, \infty)\)
Figure 8.E.1- gamme :\([0, \infty)\)
4.
- domaine :\((-\infty, \infty)\)
Graphique 8.E.2- gamme :\((-\infty, \infty)\)
Utiliser le système de numérotation complexe
Dans les exercices suivants, écrivez chaque expression en termes\(i\) et simplifiez-la si possible.
-
- \(\sqrt{-100}\)
- \(\sqrt{-13}\)
- \(\sqrt{-45}\)
- Réponse
-
Résolvez vous-même
Dans les exercices suivants, ajoutez ou soustrayez.
- \(\sqrt{-50}+\sqrt{-18}\)
- \((8-i)+(6+3 i)\)
- \((6+i)-(-2-4 i)\)
- \((-7-\sqrt{-50})-(-32-\sqrt{-18})\)
- Réponse
-
1. \(8 \sqrt{2} i\)
3. \(8+5 i\)
Dans les exercices suivants, multipliez.
- \((-2-5 i)(-4+3 i)\)
- \(-6 i(-3-2 i)\)
- \(\sqrt{-4} \cdot \sqrt{-16}\)
- \((5-\sqrt{-12})(-3+\sqrt{-75})\)
- Réponse
-
1. \(23+14 i\)
3. \(-6\)
Dans les exercices suivants, multipliez en utilisant le modèle Product of Binomial Squares.
- \((-2-3 i)^{2}\)
- Réponse
-
1. \(-5-12 i\)
Dans les exercices suivants, multipliez en utilisant le modèle Product of Complex Conjugués.
- \((9-2 i)(9+2 i)\)
- Réponse
-
Résolvez vous-même
Dans les exercices suivants, divisez.
- \(\frac{2+i}{3-4 i}\)
- \(\frac{-4}{3-2 i}\)
- Réponse
-
1. \(\frac{2}{25}+\frac{11}{25} i\)
Dans les exercices suivants, simplifiez.
- \(i^{48}\)
- \(i^{255}\)
- Réponse
-
1. \(1\)
Test d'entraînement
Dans les exercices suivants, simplifiez l'utilisation de valeurs absolues si nécessaire.
- \(\sqrt[3]{125 x^{9}}\)
- \(\sqrt{169 x^{8} y^{6}}\)
- \(\sqrt[3]{72 x^{8} y^{4}}\)
- \(\sqrt{\frac{45 x^{3} y^{4}}{180 x^{5} y^{2}}}\)
- Réponse
-
1. \(5x^{3}\)
3. \(2 x^{2} y \sqrt[3]{9 x^{2} y}\)
Dans les exercices suivants, simplifiez. Supposons que toutes les variables sont positives.
-
- \(216^{-\frac{1}{4}}\)
- \(-49^{\frac{3}{2}}\)
- \(\sqrt{-45}\)
- \(\frac{x^{-\frac{1}{4}} \cdot x^{\frac{5}{4}}}{x^{-\frac{3}{4}}}\)
- \(\left(\frac{8 x^{\frac{2}{3}} y^{-\frac{5}{2}}}{x^{-\frac{7}{3}} y^{\frac{1}{2}}}\right)^{\frac{1}{3}}\)
- \(\sqrt{48 x^{5}}-\sqrt{75 x^{5}}\)
- \(\sqrt{27 x^{2}}-4 x \sqrt{12}+\sqrt{108 x^{2}}\)
- \(2 \sqrt{12 x^{5}} \cdot 3 \sqrt{6 x^{3}}\)
- \(\sqrt[3]{4}(\sqrt[3]{16}-\sqrt[3]{6})\)
- \((4-3 \sqrt{3})(5+2 \sqrt{3})\)
- \(\frac{\sqrt[3]{128}}{\sqrt[3]{54}}\)
- \(\frac{\sqrt{245 x y^{-4}}}{\sqrt{45 x^{4} y^{3}}}\)
- \(\frac{1}{\sqrt[3]{5}}\)
- \(\frac{3}{2+\sqrt{3}}\)
- \(\sqrt{-4} \cdot \sqrt{-9}\)
- \(-4 i(-2-3 i)\)
- \(\frac{4+i}{3-2 i}\)
- \(i^{172}\)
- Réponse
-
1.
- \(\frac{1}{4}\)
- \(-343\)
3. \(x^{\frac{7}{4}}\)
5. \(-x^{2} \sqrt{3 x}\)
7. \(36 x^{4} \sqrt{2}\)
9. \(2-7 \sqrt{3}\)
11. \(\frac{7 x^{5}}{3 y^{7}}\)
13. \(3(2-\sqrt{3})\)
15. \(-12+8i\)
17. \(-i\)
Dans les exercices suivants, résolvez.
- \(\sqrt{2 x+5}+8=6\)
- \(\sqrt{x+5}+1=x\)
- \(\sqrt[3]{2 x^{2}-6 x-23}=\sqrt[3]{x^{2}-3 x+5}\)
- Réponse
-
2. \(x=4\)
Dans l'exercice suivant,
- trouvez le domaine de la fonction
- représenter graphiquement la fonction
- utilisez le graphique pour déterminer la plage
- \(g(x)=\sqrt{x+2}\)
- Réponse
-
1.
- domaine :\([-2, \infty)\)
Graphique 8.E.3- gamme :\([0, \infty)\)