Skip to main content
Global

9.3:加上和减去平方根

  • Page ID
    204389
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    学习目标

    在本节结束时,您将能够:

    • 像平方根一样加减法
    • 加上和减去需要简化的平方根
    做好准备

    在开始之前,请参加这个准备测验。

    1. 添加:ⓐ\(3x+9x\)\(5m+5n\)
      如果你错过了这个问题,请查看 [链接]
    2. 简化:\(\sqrt{50x^3}\)
      如果你错过了这个问题,请查看 [链接]

    我们知道,我们必须遵循运算顺序来简化具有平方根的表达式。 激进是一个分组符号,所以我们首先在激进部分内部工作。 我们用这种\(\sqrt{2+7}\)方式简化:

    \[\begin{array}{ll} {}&{\sqrt{2+7}}\\ {\text{Add inside the radical.}}&{\sqrt{9}}\\ {\text{Simplify.}}&{3}\\ \end{array}\]

    因此,如果我们必须补充\(\sqrt{2}+\sqrt{7}\),我们绝不能将它们合并为一个激进分子。

    \(\sqrt{2}+\sqrt{7} \ne \sqrt{2+7}\)

    尝试用不同的基数加平方根就像尝试添加不同的术语一样。

    \[\begin{array}{llll} {\text{But, just like we can}}&{x+x}&{\text{we can add}}&{\sqrt{3}+\sqrt{3}}\\ {}&{x+x=2x}&{}&{\sqrt{3}+\sqrt{3}=2\sqrt{3}}\\ \end{array}\]

    使用相同的 radicand 添加平方根就像添加相似项一样。 我们用相同的 radicand 来称呼平方根,就像平方根一样,以提醒我们它们的工作原理与相似术语相同。

    定义:像平方根一样

    具有相同基数的平方根被称为平方根

    我们像平方根一样添加和减去,就像我们相加和减去相似项一样。 我们知道 3x +8x 等于 11 倍。 同样,我们添加了\(3\sqrt{x}+8\sqrt{x}\) and the result is \(11\sqrt{x}\).

    像平方根一样加减法

    考虑在接下来的几个示例中添加带有变量的相似术语。 当你有类似的基数时,你只需将系数相加或减去即可。 当激进分子不一样时,你就无法将这些术语组合起来。

    示例\(\PageIndex{1}\)

    简化:\(2\sqrt{2}−7\sqrt{2}\)

    回答

    \[\begin{array}{ll} {}&{2\sqrt{2}−7\sqrt{2}}\\ {\text{Since the radicals are like, we subtract the coefficients.}}&{−5\sqrt{2}}\\ \end{array}\]

    示例\(\PageIndex{2}\)

    简化:\(8\sqrt{2}−9\sqrt{2}\)

    回答

    \(−\sqrt{2}\)

    示例\(\PageIndex{3}\)

    简化:\(5\sqrt{3}−9\sqrt{3}\)

    回答

    \(−4\sqrt{3}\)

    示例\(\PageIndex{4}\)

    简化:\(3\sqrt{y}+4\sqrt{y}\)

    回答

    \[\begin{array}{ll} {}&{3\sqrt{y}+4\sqrt{y}}\\ {\text{Since the radicals are like, we add the coefficients.}}&{7\sqrt{y}}\\ \end{array}\]

    示例\(\PageIndex{5}\)

    简化:\(2\sqrt{x}+7\sqrt{x}\)

    回答

    \(9\sqrt{x}\)

    示例\(\PageIndex{6}\)

    简化:\(5\sqrt{u}+3\sqrt{u}\)

    回答

    \(8\sqrt{u}\)

    示例\(\PageIndex{7}\)

    简化:\(4\sqrt{x}−2\sqrt{y}\)

    回答

    \[\begin{array}{ll} {}&{4\sqrt{x}−2\sqrt{y}}\\ {\text{Since the radicals are not like, we cannot subtract them. We leave the expression as is.}}&{4\sqrt{x}−2\sqrt{y}}\\ \end{array}\]

    示例\(\PageIndex{8}\)

    简化:\(7\sqrt{p}−6\sqrt{q}\)

    回答

    \(7\sqrt{p}−6\sqrt{q}\)

    示例\(\PageIndex{9}\)

    简化:\(6\sqrt{a}−3\sqrt{b}\)

    回答

    \(6\sqrt{a}−3\sqrt{b}\)

    示例\(\PageIndex{10}\)

    简化:\(5\sqrt{13}+4\sqrt{13}+2\sqrt{13}\)

    回答

    \[\begin{array}{ll} {}&{5\sqrt{13}+4\sqrt{13}+2\sqrt{13}}\\ {\text{Since the radicals are like, we add the coefficients.}}&{11\sqrt{13}}\\ \end{array}\]

    示例\(\PageIndex{11}\)

    简化:\(4\sqrt{11}+2\sqrt{11}+3\sqrt{11}\)

    回答

    \(9\sqrt{11}\)

    示例\(\PageIndex{12}\)

    简化:\(6\sqrt{10}+2\sqrt{10}+3\sqrt{10}\)

    回答

    \(11\sqrt{10}\)

    示例\(\PageIndex{13}\)

    简化:\(2\sqrt{6}−6\sqrt{6}+3\sqrt{3}\)

    回答

    \[\begin{array}{ll} {}&{2\sqrt{6}−6\sqrt{6}+3\sqrt{3}}\\ {\text{Since the first two radicals are like, we subtract their coefficients.}}&{−4\sqrt{6}+3\sqrt{3}}\\ \end{array}\]

    示例\(\PageIndex{14}\)

    简化:\(5\sqrt{5}−4\sqrt{5}+2\sqrt{6}\)

    回答

    \(\sqrt{5}+2\sqrt{6}\)

    示例\(\PageIndex{15}\)

    简化:\(3\sqrt{7}−8\sqrt{7}+2\sqrt{5}\)

    回答

    \(−5\sqrt{7}+2\sqrt{5}\)

    示例\(\PageIndex{16}\)

    简化:\(2\sqrt{5n}−6\sqrt{5n}+4\sqrt{5n}\)

    回答

    \[\begin{array}{ll} {}&{2\sqrt{5n}−6\sqrt{5n}+4\sqrt{5n}}\\ {\text{Since the radicals are like, we combine them.}}&{−0\sqrt{5n}}\\ {\text{Simplify.}}&{0}\\ \end{array}\]

    示例\(\PageIndex{17}\)

    简化:\(\sqrt{7x}−7\sqrt{7x}+4\sqrt{7x}\)

    回答

    \(−2\sqrt{7x}\)

    示例\(\PageIndex{18}\)

    简化:\(4\sqrt{3y}−7\sqrt{3y}+2\sqrt{3y}\)

    回答

    \(−3\sqrt{y}\)

    当自由基包含多个变量时,只要所有变量及其指数相同,自由基就是这样。

    示例\(\PageIndex{19}\)

    简化:\(\sqrt{3xy}+5\sqrt{3xy}−4\sqrt{3xy}\)

    回答

    \[\begin{array}{ll} {}&{\sqrt{3xy}+5\sqrt{3xy}−4\sqrt{3xy}}\\ {\text{Since the radicals are like, we combine them.}}&{2\sqrt{3xy}}\\ \end{array}\]

    示例\(\PageIndex{20}\)

    简化:\(\sqrt{5xy}+4\sqrt{5xy}−7\sqrt{5xy}\)

    回答

    \(−2\sqrt{5xy}\)

    示例\(\PageIndex{21}\)

    简化:\(3\sqrt{7mn}+\sqrt{7mn}−4\sqrt{7mn}\)

    回答

    0

    加上和减去需要简化的平方根

    请记住,我们总是通过移除最大的完美平方因子来简化平方根。 有时候,当我们必须加上或减去看起来不像激进的平方根时,在简化平方根之后,我们会发现像激进分子一样。

    示例\(\PageIndex{22}\)

    简化:\(\sqrt{20}+3\sqrt{5}\)

    回答

    \[\begin{array}{ll} {}&{\sqrt{20}+3\sqrt{5}}\\ {\text{Simplify the radicals, when possible.}}&{\sqrt{4}·\sqrt{5}+3\sqrt{5}}\\ {}&{2\sqrt{5}+3\sqrt{5}}\\ {\text{Combine the like radicals.}}&{5\sqrt{5}}\\ \end{array}\]

    示例\(\PageIndex{23}\)

    简化:\(\sqrt{18}+6\sqrt{2}\)

    回答

    \(9\sqrt{2}\)

    示例\(\PageIndex{24}\)

    简化:\(\sqrt{27}+4\sqrt{3}\)

    回答

    \(7\sqrt{3}\)

    示例\(\PageIndex{25}\)

    简化:\(\sqrt{48}−\sqrt{75}\)

    回答

    \[\begin{array}{ll} {}&{\sqrt{48}−\sqrt{75}}\\ {\text{Simplify the radicals.}}&{\sqrt{16}·\sqrt{3}−\sqrt{25}·\sqrt{3}}\\ {}&{4\sqrt{3}−5\sqrt{3}}\\ {\text{Combine the like radicals.}}&{−\sqrt{3}}\\ \end{array}\]

    示例\(\PageIndex{26}\)

    简化:\(\sqrt{32}−\sqrt{18}\)

    回答

    \(\sqrt{2}\)

    示例\(\PageIndex{27}\)

    简化:\(\sqrt{20}−\sqrt{45}\)

    回答

    \(−\sqrt{5}\)

    就像我们使用乘法的关联属性来简化 5 (3x) 然后得到 15x 一样,我们可以简化\(5(3\sqrt{x})\) and get \(15\sqrt{x}\). We will use the Associative Property to do this in the next example.

    示例\(\PageIndex{28}\)

    简化:\(5\sqrt{18}−2\sqrt{8}\)

    回答

    \[\begin{array}{ll} {}&{5\sqrt{18}−2\sqrt{8}}\\ {\text{Simplify the radicals.}}&{5·\sqrt{9}·\sqrt{2}−2·\sqrt{4}·\sqrt{2}}\\ {}&{5·3·\sqrt{2}−2·2·\sqrt{2}}\\ {}&{15\sqrt{2}−4\sqrt{2}}\\ {\text{Combine the like radicals.}}&{11\sqrt{2}}\\ \end{array}\]

    示例\(\PageIndex{29}\)

    简化:\(4\sqrt{27}−3\sqrt{12}\)

    回答

    \(6\sqrt{3}\)

    示例\(\PageIndex{30}\)

    简化:\(3\sqrt{20}−7\sqrt{45}\)

    回答

    \(−15\sqrt{5}\)

    示例\(\PageIndex{31}\)

    简化:\(\frac{3}{4}\sqrt{192}−\frac{5}{6}\sqrt{108}\)

    回答

    \[\begin{array}{ll} {}&{\frac{3}{4}\sqrt{192}−\frac{5}{6}\sqrt{108}}\\ {\text{Simplify the radicals.}}&{\frac{3}{4}\sqrt{64}·\sqrt{3}−\frac{5}{6}\sqrt{36}·\sqrt{3}}\\ {}&{\frac{3}{4}·8·\sqrt{3}−\frac{5}{6}·6·\sqrt{3}}\\ {}&{6\sqrt{3}−5\sqrt{3}}\\ {\text{Combine the like radicals.}}&{\sqrt{3}}\\ \end{array}\]

    示例\(\PageIndex{32}\)

    简化:\(\frac{2}{3}\sqrt{108}−\frac{5}{7}\sqrt{147}\)

    回答

    \(−\sqrt{3}\)

    示例\(\PageIndex{33}\)

    简化:\(\frac{3}{5}\sqrt{200}−\frac{3}{4}\sqrt{128}\)

    回答

    0

    示例\(\PageIndex{34}\)

    简化:\(\frac{2}{3}\sqrt{48}−\frac{3}{4}\sqrt{12}\)

    回答

    \[\begin{array}{ll} {}&{\frac{2}{3}\sqrt{48}−\frac{3}{4}\sqrt{12}}\\ {\text{Simplify the radicals.}}&{\frac{2}{3}\sqrt{16}·\sqrt{3}−\frac{3}{4}\sqrt{4}·\sqrt{3}}\\ {}&{\frac{2}{3}·4·\sqrt{3}−\frac{3}{4}·2·\sqrt{3}}\\ {}&{\frac{8}{3}\sqrt{3}−\frac{3}{2}\sqrt{3}}\\ {\text{Find a common denominator to subtract the coefficients of the like radicals.}}&{\frac{16}{6}\sqrt{3}−\frac{9}{6}\sqrt{3}}\\ {\text{Simplify.}}&{\frac{7}{6}\sqrt{3}} \end{array}\]

    示例\(\PageIndex{35}\)

    简化:\(\frac{2}{5}\sqrt{32}−\frac{1}{3}\sqrt{8}\)

    回答

    \(\frac{14}{15}\sqrt{2}\)

    示例\(\PageIndex{36}\)

    简化:\(\frac{1}{3}\sqrt{80}−\frac{1}{4}\sqrt{125}\)

    回答

    \(\frac{1}{12}[\sqrt{5}\)

    在下一个示例中,我们将从平方根中移除常量因子和可变因子。

    示例\(\PageIndex{37}\)

    简化:\(\sqrt{18n^5}−\sqrt{32n^5}\)

    回答

    \[\begin{array}{ll} {}&{\sqrt{18n^5}−\sqrt{32n^5}}\\ {\text{Simplify the radicals.}}&{\sqrt{9n^4}·\sqrt{2n}−\sqrt{16n^4}·\sqrt{2n}}\\ {}&{3n^2\sqrt{2n}−4n^2\sqrt{2n}}\\ {\text{Combine the like radicals.}}&{−n^2\sqrt{2n}}\\ \end{array}\]

    示例\(\PageIndex{38}\)

    简化:\(\sqrt{32m^7}−\sqrt{50m^7}\)

    回答

    \(−m^3\sqrt{2m}\)

    示例\(\PageIndex{39}\)

    简化:\(\sqrt{27p^3}−\sqrt{48p^3}\)

    回答

    \(−p^3\sqrt{p}\)

    示例\(\PageIndex{40}\)

    简化:\(9\sqrt{50m^2}−6\sqrt{48m^2}\).

    回答

    \[\begin{array}{ll} {}&{9\sqrt{50m^{2}}−6\sqrt{48m^{2}}}\\ {\text{Simplify the radicals.}}&{9\sqrt{25m^{2}}·\sqrt{2}−6·\sqrt{16m^{2}}·\sqrt{3}}\\ {}&{9·5m·\sqrt{2}−6·4m·\sqrt{3}}\\ {}&{45m\sqrt{2}−24m\sqrt{3}}\\ \end{array}\]

    示例\(\PageIndex{41}\)

    简化:\(5\sqrt{32x^2}−3\sqrt{48x^2}\)

    回答

    \(20x\sqrt{2}−12x\sqrt{3}\)

    示例\(\PageIndex{42}\)

    简化:\(7\sqrt{48y^2}−4\sqrt{72y^2}\)

    回答

    \(28y\sqrt{3}−24y\sqrt{2}\)

    示例\(\PageIndex{43}\)

    简化:\(2\sqrt{8x^2}−5x\sqrt{32}+5\sqrt{18x^2}\)

    回答

    \[\begin{array}{ll} {}&{2\sqrt{8x^2}−5x\sqrt{32}+5\sqrt{18x^2}}\\ {\text{Simplify the radicals.}}&{2\sqrt{4x^2}·\sqrt{2}−5x\sqrt{16}·\sqrt{2}+5\sqrt{9x^2}·\sqrt{2}}\\ {}&{2·2x·\sqrt{2}−5x·4·\sqrt{2}+5·3x·\sqrt{2}}\\ {}&{4x\sqrt{2}−20x\sqrt{2}+15x\sqrt{2}}\\ {\text{Combine the like radicals.}}&{−x\sqrt{2}}\\ \end{array}\]

    示例\(\PageIndex{44}\)

    简化:\(3\sqrt{12x^2}−2x\sqrt{48}+4\sqrt{27x^2}\)

    回答

    \(10x\sqrt{3}\)

    示例\(\PageIndex{45}\)

    简化:\(3\sqrt{18x^2}−6x\sqrt{32}+2\sqrt{50x^2}\)

    回答

    \(−5x\sqrt{2}\)

    访问此在线资源以获取更多指导和练习,并通过加减平方根进行练习。

    • 加上/减去平方根

    词汇表

    像平方根
    具有相同基数的平方根被称为平方根。