5.3: 指数的商法则
- Page ID
- 171054
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)
对于任何实数\(a\)和正数\(m\)\(n\),其中\(m > n\)。
指数的商法则如下。
\(\dfrac{a^m }{a^n} = a^{ m−n}\)
注意:基础必须相同。 结果将具有相同的基础。
想法:
从最后一节开始,
\(x^3 = \textcolor{blue}{x \cdot x \cdot x} \qquad x^5 = \textcolor{red}{x \cdot x \cdot x \cdot x \cdot x}\)
他们的商数
\(\dfrac{x^ 5 }{x^3} = \dfrac{\textcolor{red}{x \cdot x \cdot x \cdot x \cdot x }}{\textcolor{blue}{x \cdot x \cdot x }}= \dfrac{\textcolor{red}{\cancel{x \cdot x\cdot x \cdot x }\cdot x }}{\textcolor{blue}{\cancel{x \cdot x\cdot x }}}= \dfrac{\textcolor{red}{x \cdot x }}{1} = \textcolor{red}{x \cdot x}\)。
所以,\(\dfrac{x^5 }{x^3 }= x^{5−3 }= x^2\)
使用指数的商法则来简化表达式。
- \(\dfrac{k^3 }{k^2}\)
- \(\dfrac{r^{32} }{r^{21}}\)
- \(\dfrac{\sqrt{2}^ 7 }{\sqrt{2 }^4}\)
- \(\dfrac{(−7)^9 }{(−7)^6}\)
- \(\dfrac{(x \sqrt{5})^8 }{x\sqrt{ 5}}\)
- \(\dfrac{(xy)^{18} }{(xy)^{17}}\)
解决方案
表情 | 商数规则 | 基地 |
\(\dfrac{k^3 }{k^2}\) | \(k^{3−2 }= k\) | \(k\) |
\(\dfrac{r^{32} }{r^{21}}\) | \(r^{32−21 }= r^{11}\) | \(r\) |
\(\dfrac{\sqrt{2}^ 7 }{\sqrt{2 }^4}\) | \(\sqrt{2 }^{7−4 }= \sqrt{2 }^3\) | \(\sqrt{2}\) |
\(\dfrac{(−7)^9 }{(−7)^6}\) | \((−7)^{9−6 }= (−7)^3\) | \(-7\) |
\(\dfrac{(x \sqrt{5})^8 }{x\sqrt{ 5}}\) | \((x \sqrt{5})^{8−1 }= (x \sqrt{5})^7\) | \(x\sqrt{5}\) |
\(\dfrac{(xy)^{18} }{(xy)^{17}}\) | \((xy)^{18−17 }= xy\) | \(xy\) |
注意:在本节中,分子的指数大于分母的指数。 情况并非总是如此。 分母中的指数大于分子中的指数的情况,将在后面的章节中讨论。
使用指数的商法则来简化给定的表达式。
- \(\dfrac{−y ^{13} }{−y^7}\)
- \(\dfrac{(2x)^{25}}{ 2x}\)
- \(\dfrac{\sqrt{7 }^{17 }}{\sqrt{7 }^{12}}\)
- \(\dfrac{(−7)^9 }{(−7)^6}\)
- \(\dfrac{(x + y) ^{78}}{ (x + y)^{43}}\)
- \(\dfrac{\sqrt{xy }^{15 }}{\sqrt{xy }^{11}}\)