Skip to main content
Global

5.2: 指数乘积规则

  • Page ID
    171084
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    定义:指数的乘积法则

    对于任何实数\(a\)和正数\(m\)\(n\),指数的乘积规则如下。

    \(a^m \cdot a^n = a^{m+n}\)

    注意:基础必须相同才能使用乘积规则。

    想法:

    从最后一节开始\(x^3 = \textcolor{blue}{ x \cdot x \cdot x }\qquad x^5 = \textcolor{red}{x \cdot x \cdot x \cdot x \cdot x}\)

    他们的产品

    \(x^3 \cdot x^5 = \textcolor{blue}{x \cdot x \cdot x} \textcolor{red}{\cdot x \cdot x \cdot x \cdot x \cdot x} = x^8\)

    因此,\(x^3 \cdot x^5 = x^{3+5 }= x^8\)

    使用指数乘积法则来简化表达式。

    1. \(k^3 \cdot k^9\)
    2. \(\left(\dfrac{2 }{7}\right)^2 \cdot \left(\dfrac{2 }{7}\right)^6\)
    3. \((−2a)^3 \cdot (−2a)^7\)
    4. \(x \cdot x^3 \cdot x^{11}\)
    5. \(y^{13 }\cdot y^{33}\)
    6. \(x^3 \cdot y^2 \cdot x \cdot y^4\)
    解决方案
    表情 产品规则 基地
    \(k^3 \cdot k^9\) \(k^{3+9}= k^{12}\) \(k\)
    \(\left(\dfrac{2 }{7}\right)^2 \cdot \left(\dfrac{2 }{7}\right)^6\) \(\left( \dfrac{2 }{7}\right)^{2+6 }= \left(\dfrac{2 }{7}\right)^8\) \(\dfrac{2}{7}\)
    \((−2a)^3 \cdot (−2a)^7\) \((−2a)^{3+7 }= (−2a)^{10}\) \(-2a\)
    \(x \cdot x^3 \cdot x^{11}\) \(x ^{1+3+11 }= x^{15}\) \(x\)
    \(y^{13 }\cdot y^{33}\) \(y^{13+33 }= y^46\) \(y\)
    \(x^3 \cdot y^2 \cdot x \cdot y^4\) \(x^{3+1 }\cdot y ^{2+4 }= x^{ 4 }\cdot y^{6}\) \(x\)\(y\)

    注意:同样,基数必须相同,以便使用指数乘积法则进行简化

    简化使用指数乘积法则的有用步骤:

    1. 识别具有共同基础的术语
    2. 确定常用基数的指数。
    3. 将常用基数的指数相加,并使总和的结果成为新的指数。
    4. 根据需要重复步骤

    使用指数乘积法则简化以下内容。

    1. \(f^3 \cdot f^11\)
    2. \(\left(\dfrac{x}{7}\right)^2 \cdot \left(\dfrac{x }{7}\right)^3\)
    3. \((−7x)^9 \cdot (−7x)^7\)
    4. \(h^5 \cdot h^3 \cdot h^{11}\)
    5. \(t^{13} \cdot t^{33}\)
    6. \(x^8 \cdot y^2 \cdot z \cdot x^ 3 \cdot y^2 \cdot z^{17}\)
    7. \(x^3 \cdot y^4 \cdot x^3\)