7.5E:练习
- Page ID
- 204205
求解有理方程
在以下练习中,求解每个有理方程。
1。 \(\dfrac{1}{a}+\dfrac{2}{5}=\dfrac{1}{2}\)
- 回答
-
\(a=10\)
2。 \(\dfrac{6}{3}-\dfrac{2}{d}=\dfrac{4}{9}\)
3。 \(\dfrac{4}{5}+\dfrac{1}{4}=\dfrac{2}{v}\)
- 回答
-
\(v=\dfrac{40}{21}\)
4。 \(\dfrac{3}{8}+\dfrac{2}{y}=\dfrac{1}{4}\)
5。 \(1-\dfrac{2}{m}=\dfrac{8}{m^{2}}\)
- 回答
-
\(m=-2,\; m=4\)
6。 \(1+\dfrac{4}{n}=\dfrac{21}{n^{2}}\)
7。 \(1+\dfrac{9}{p}=\dfrac{-20}{p^{2}}\)
- 回答
-
\(p=-5, \; p=-4\)
8。 \(1-\dfrac{7}{q}=\dfrac{-6}{q^{2}}\)
9。 \(\dfrac{5}{3 v-2}=\dfrac{7}{4 v}\)
- 回答
-
\(v=14\)
10。 \(\dfrac{8}{2 w+1}=\dfrac{3}{w}\)
11。 \(\dfrac{3}{x+4}+\dfrac{7}{x-4}=\dfrac{8}{x^{2}-16}\)
- 回答
-
\(x=-\dfrac{4}{5}\)
12。 \(\dfrac{5}{y-9}+\dfrac{1}{y+9}=\dfrac{18}{y^{2}-81}\)
13。 \(\dfrac{8}{z-10}-\dfrac{7}{z+10}=\dfrac{5}{z^{2}-100}\)
- 回答
-
\(z=-145\)
14。 \(\dfrac{9}{a+11}-\dfrac{6}{a-11}=\dfrac{6}{a^{2}-121}\)
15。 \(\dfrac{-10}{q-2}-\dfrac{7}{q+4}=1\)
- 回答
-
\(q=-18, \; q=-1\)
16。 \(\dfrac{2}{s+7}-\dfrac{3}{s-3}=1\)
17。 \(\dfrac{v-10}{v^{2}-5 v+4}=\dfrac{3}{v-1}-\dfrac{6}{v-4}\)
- 回答
-
没有解决办法
18。 \(\dfrac{w+8}{w^{2}-11 w+28}=\dfrac{5}{w-7}+\dfrac{2}{w-4}\)
19。 \(\dfrac{x-10}{x^{2}+8 x+12}=\dfrac{3}{x+2}+\dfrac{4}{x+6}\)
- 回答
-
没有解决办法
20。 \(\dfrac{y-5}{y^{2}-4 y-5}=\dfrac{1}{y+1}+\dfrac{1}{y-5}\)
21。 \(\dfrac{b+3}{3 b}+\dfrac{b}{24}=\dfrac{1}{b}\)
- 回答
-
\(b=-8\)
22。 \(\dfrac{c+3}{12 c}+\dfrac{c}{36}=\dfrac{1}{4 c}\)
23。 \(\dfrac{d}{d+3}=\dfrac{18}{d^{2}-9}+4\)
- 回答
-
\(d=2\)
24。 \(\dfrac{m}{m+5}=\dfrac{50}{m^{2}-25}+6\)
25。 \(\dfrac{n}{n+2}-3=\dfrac{8}{n^{2}-4}\)
- 回答
-
\(m=1\)
26。 \(\dfrac{p}{p+7}-8=\dfrac{98}{p^{2}-49}\)
27。 \(\dfrac{q}{3 q-9}-\dfrac{3}{4 q+12}=\dfrac{7 q^{2}+6 q+63}{24 q^{2}-216}\)
- 回答
-
没有解决办法
28。 \(\dfrac{r}{3 r-15}-\dfrac{1}{4 r+20}=\dfrac{3 r^{2}+17 r+40}{12 r^{2}-300}\)
29。 \(\dfrac{s}{2 s+6}-\dfrac{2}{5 s+5}=\dfrac{5 s^{2}-3 s-7}{10 s^{2}+40 s+30}\)
- 回答
-
\(s=\dfrac{5}{4}\)
30。 \(\dfrac{t}{6 t-12}-\dfrac{5}{2 t+10}=\dfrac{t^{2}-23 t+70}{12 t^{2}+36 t-120}\)
31。 \(\dfrac{2}{x^{2}+2 x-8}-\dfrac{1}{x^{2}+9 x+20}=\dfrac{4}{x^{2}+3 x-10}\)
- 回答
-
\(x=-\dfrac{4}{3}\)
32。 \(\dfrac{5}{x^{2}+4 x+3}+\dfrac{2}{x^{2}+x-6}=\dfrac{3}{x^{2}-x-2}\)
33。 \(\dfrac{3}{x^{2}-5 x-6}+\dfrac{3}{x^{2}-7 x+6}=\dfrac{6}{x^{2}-1}\)
- 回答
-
没有解决办法
34。 \(\dfrac{2}{x^{2}+2 x-3}+\dfrac{3}{x^{2}+4 x+3}=\dfrac{6}{x^{2}-1}\)
求解涉及函数的有理方程
35。 对于有理函数,\(f(x)=\dfrac{x-2}{x^{2}+6 x+8}\):
- 找到函数的域
- 解决\(f(x)=5\)
- 在图形上找到此函数值处的点
- 回答
-
- 除了 and 以外\(x \neq-2\),域名均为实数\(x \neq-4\)
- \(x=-3, x=-\dfrac{14}{5}\)
- \((-3,5),\left(-\dfrac{14}{5}, 5\right)\)
36。 对于有理函数,\(f(x)=\dfrac{x+1}{x^{2}-2 x-3}\):
- 找到函数的域
- 解决\(f(x)=1\)
- 在图形上找到此函数值处的点
37。 对于有理函数,\(f(x)=\dfrac{2-x}{x^{2}-7 x+10}\):
- 找到函数的域
- 解决\(f(x)=2\)
- 在图形上找到此函数值处的点
- 回答
-
- 除了 and 以外\(x \neq 2\),域名均为实数\(x \neq 5\)
- \(x=\dfrac{9}{2}\)
- \(\left(\dfrac{9}{2}, 2\right)\)
38。 对于有理函数,\(f(x)=\dfrac{5-x}{x^{2}+5 x+6}\):
- 找到函数的域
- 解决\(f(x)=3\)
- 在图形上找到此函数值处的点
求解特定变量的有理方程
在以下练习中,求解:
39。 \(\dfrac{c}{r}=2 \pi \text { for } r\)
- 回答
-
\(r=\dfrac{C}{2 \pi}\)
40。 \(\dfrac{I}{r}=P \text { for } r\)
41。 \(\dfrac{v+3}{w-1}=\dfrac{1}{2} \text { for } w\)
- 回答
-
\(w=2 v+7\)
42。 \(\dfrac{x+5}{2-y}=\dfrac{4}{3} \text { for } y\)
43。 \(a=\dfrac{b+3}{c-2} \text { for } c\)
- 回答
-
\(c=\dfrac{b+3+2 a}{a}\)
44。 \(m=\dfrac{n}{2-n} \text { for } n\)
45。 \(\dfrac{1}{p}+\dfrac{2}{q}=4 \text { for } p\)
- 回答
-
\(p=\dfrac{q}{4 q-2}\)
46。 \(\dfrac{3}{s}+\dfrac{1}{t}=2 \text { for } s\)
47。 \(\dfrac{2}{v}+\dfrac{1}{5}=\dfrac{3}{w} \text { for } w\)
- 回答
-
\(w=\dfrac{15 v}{10+v}\)
48。 \(\dfrac{6}{x}+\dfrac{2}{3}=\dfrac{1}{y} \text { for } y\)
49。 \(\dfrac{m+3}{n-2}=\dfrac{4}{5} \text { for } n\)
- 回答
-
\(n=\dfrac{5 m+23}{4}\)
50。 \(r=\dfrac{s}{3-t} \text { for } t\)
51。 \(\dfrac{E}{c}=m^{2} \text { for } c\)
- 回答
-
\(c=\dfrac{E}{m^{2}}\)
52。 \(\dfrac{R}{T}=W \text { for } T\)
53。 \(\dfrac{3}{x}-\dfrac{5}{y}=\dfrac{1}{4} \text { for } y\)
- 回答
-
\(y=\dfrac{20 x}{12-x}\)
54。 \(c=\dfrac{2}{a}+\dfrac{b}{5} \text { for } a\)
写作练习
55。 你的同学在本节中遇到了问题。 写下你用来解释如何求解有理方程的步骤。
- 回答
-
答案会有所不同。
56。 Alek认为该方程\(\dfrac{y}{y+6}=\dfrac{72}{y^{2}-36}+4\)有两个解,\(y=-6\)和\(y=4\)。 解释为什么 Alek 错了。