Skip to main content
Library homepage
 
Global

8.0: مقدمة لفواصل الثقة

لنفترض أنك كنت تحاول تحديد متوسط إيجار شقة من غرفتي نوم في بلدتك. يمكنك البحث في القسم المصنف من الصحيفة، وكتابة العديد من الإيجارات المدرجة، ووضع متوسط لها معًا. كنت ستحصل على تقدير نقطي للمتوسط الحقيقي. إذا كنت تحاول تحديد النسبة المئوية للمرات التي تصنع فيها سلة عند إطلاق كرة سلة، فيمكنك حساب عدد التسديدات التي تقوم بها وقسمها على عدد التسديدات التي جربتها. في هذه الحالة، ستحصل على تقدير النقاط للنسبة الحقيقية للمعلمةp في دالة الكثافة الاحتمالية ذات الحدين.

هذه صورة لـ M&Ms مجمعة معًا. تتميز أجهزة M&Ms باللون الأحمر والأزرق والأخضر والأصفر والبرتقالي والبني.
الشكل8.0.1 هل تساءلت يومًا عن متوسط عدد M&Ms في حقيبة في متجر البقالة؟ يمكنك استخدام فترات الثقة للإجابة على هذا السؤال. (تصوير: كوميدي_نوس/فليكر)

نحن نستخدم بيانات نموذجية لعمل تعميمات حول مجموعة سكانية غير معروفة. هذا الجزء من الإحصائيات يسمى الإحصاء الاستنتاجي. تساعدنا بيانات العينة في إجراء تقدير لمعامل السكان. نحن ندرك أن تقدير النقاط ليس على الأرجح القيمة الدقيقة لمعلمة السكان، ولكنه قريب منها. بعد حساب تقديرات النقاط، نقوم بإنشاء تقديرات الفواصل الزمنية، والتي تسمى فترات الثقة. ما توفره لنا الإحصائيات بخلاف المتوسط البسيط، أو تقدير النقاط، هو تقدير يمكننا أن نعلق عليه احتمالية الدقة، وهو ما سنسميه مستوى الثقة. نقوم بعمل استنتاجات بمستوى معروف من الاحتمالات.

في هذا الفصل، ستتعلم كيفية إنشاء فترات الثقة وتفسيرها. سوف تتعلم أيضًا توزيعًا جديدًا، وهو Student's -T، وكيفية استخدامه مع هذه الفواصل الزمنية. في جميع أنحاء الفصل، من المهم أن تضع في اعتبارك أن فترة الثقة هي متغير عشوائي. إنها المعلمة السكانية التي تم إصلاحها.

إذا كنت تعمل في قسم التسويق بشركة ترفيه، فقد تكون مهتمًا بمتوسط عدد الأغاني التي يقوم المستهلك بتنزيلها شهريًا من iTunes. إذا كان الأمر كذلك، يمكنك إجراء مسح وحساب متوسط العينة والانحراف المعياري للعينةs.¯x قد تستخدم¯x لتقدير متوسط عدد السكان وتقدير الانحراف المعياري للسكان.s متوسط العينة,¯x, هو تقدير النقاط لمتوسط السكان,μ. الانحراف المعياري للعينةs,, هو تقدير النقطة للانحراف المعياري للسكان,σ.

¯xويطلقs على كل منها اسم إحصائي.

فاصل الثقة هو نوع آخر من التقدير، ولكنه بدلاً من أن يكون رقمًا واحدًا فقط، فهو عبارة عن فاصل من الأرقام. الفاصل الزمني للأرقام هو نطاق من القيم المحسوبة من مجموعة معينة من بيانات العينة. من المرجح أن تتضمن فترة الثقة المعلمة السكانية غير المعروفة.

لنفترض، بالنسبة لمثال iTunes، أننا لا نعرف متوسط عدد السكانμ، لكننا نعلم أن الانحراف المعياري للسكان هوσ=1 وأن حجم العينة لدينا هو 100. ثم، وفقًا لنظرية الحد المركزي، يكون الانحراف المعياري لتوزيع عينات العينة يعني

σn=1100=0.1.

تقول القاعدة التجريبية، التي تنطبق على التوزيع الطبيعي، أنه في حوالي 95٪ من العينات¯x، سيكون متوسط العينة ضمن انحرافين معياريين لمتوسط السكان\ mu. بالنسبة لمثال iTunes الخاص بنا، هناك انحرافان(2)(0.1)=0.2 معياريان من المحتمل أن¯x يكون متوسط العينة في حدود 0.2 وحدة منμ.

نظرًا لأنه¯x يقع في حدود 0.2 وحدة منμ، وهو أمر غير معروف،μ فمن المحتمل أن يكون في حدود 0.2 وحدة من الاحتمال¯x بنسبة 95٪. μيتم تضمين المتوسط السكاني في فترة يتم حساب عددها الأدنى عن طريق أخذ متوسط العينة وطرح(2)(0.1) انحرافين معياريين ويتم حساب الرقم العلوي الخاص بها عن طريق أخذ متوسط العينة وإضافة انحرافين معياريين. بمعنى آخر،μ هو بين¯x0.2¯x+0.2 وفي 95٪ من جميع العينات.

بالنسبة لمثال iTunes، افترض أن العينة أنتجت نموذجًا متوسطًا¯x=2. ثم مع احتمال 95٪، يكون متوسط عدد السكان غيرμ المعروف بين

¯x0.2=20.2=1.8 and ¯x+0.2=2+0.2=2.2

نقول إننا واثقون بنسبة 95٪ من أن عدد الأغاني غير المعروفة يعني أن عدد الأغاني التي يتم تنزيلها من iTunes شهريًا يتراوح بين 1.8 و 2.2. فترة الثقة 95% هي (1.8، 2.2). يرجى ملاحظة أننا تحدثنا من حيث الثقة بنسبة 95٪ باستخدام القاعدة التجريبية. تبلغ القاعدة التجريبية لانحرافين معياريين حوالي 95٪ فقط من الاحتمال تحت التوزيع الطبيعي. على وجه الدقة، يمثل انحرافان معياريان تحت التوزيع الطبيعي في الواقع 95.44٪ من الاحتمال. لحساب مستوى الثقة الدقيق بنسبة 95٪، سنستخدم 1.96 انحرافًا معياريًا.

تشير فترة الثقة البالغة 95٪ إلى احتمالين. إما أن يحتوي الفاصل الزمني (1.8، 2.2) على المتوسط الحقيقيμ، أو أنتجت عينتنا¯x متوسطًا لا يقع ضمن 0.2 وحدة من المتوسط الحقيقيμ. يحدث الاحتمال الثاني لـ 5٪ فقط من جميع العينات (95٪ ناقص 100٪ = 5٪).

تذكر أنه يتم إنشاء فاصل ثقة لمعلمة سكانية غير معروفة مثل متوسط عدد السكان,μ.

بالنسبة لفاصل الثقة للمتوسط، ستكون الصيغة كما يلي:

μ=¯X±Zασ/n

أو كتبت بطريقة أخرى على النحو التالي:

¯XZασ/nμ¯X+Zασ/n

أين¯x هو متوسط العينة. Zαيتم تحديده من خلال مستوى الثقة الذي يريده المحلل،σ/n وهو الانحراف المعياري لتوزيع العينات للوسائل المعطاة لنا من خلال نظرية الحد المركزي.