Search
- Filter Results
- Location
- Classification
- Include attachments
- https://query.libretexts.org/Francais/Livre_%3A_Statistiques_commerciales_(OpenStax)/10%3A_Test_d'hypoth%C3%A8se_avec_deux_%C3%A9chantillons/10.05%3A_Deux_moyennes_de_population_avec_des_%C3%A9carts_types_connusLa distribution normale a le format suivant : The standard deviation is: √(σ1)2n1+(σ2)2n2 \...La distribution normale a le format suivant : The standard deviation is: √(σ1)2n1+(σ2)2n2 The test statistic (z-score) is: Zc=(¯x1−¯x2)−δ0√(σ1)2n1+(σ2)2n2 Au seuil de signification de 5 %, les données de l'échantillon ne per…
- https://query.libretexts.org/%E7%AE%80%E4%BD%93%E4%B8%AD%E6%96%87/%E5%9B%BE%E4%B9%A6%EF%BC%9A%E5%95%86%E4%B8%9A%E7%BB%9F%E8%AE%A1_(OpenStax)/10%3A_10%EF%BC%9A%E4%BD%BF%E7%94%A8%E4%B8%A4%E4%B8%AA%E6%A0%B7%E6%9C%AC%E8%BF%9B%E8%A1%8C%E5%81%87%E8%AE%BE%E6%A3%80%E9%AA%8C/10.05%3A_10.5%EF%BC%9A%E5%85%B7%E6%9C%89%E5%B7%B2%E7%9F%A5%E6%A0%87%E5%87%86%E5%B7%AE%E7%9A%84%E4%B8%A4%E4%B8%AA%E6%80%BB%E4%BD%93%E5%9D%87%E5%80%BC尽管这种情况不太可能(知道总体标准差的可能性很小),但以下示例说明了对具有已知总体标准差的独立均值的假设检验。 根据中心极限定理,均值之间差值的抽样分布是正态的。 随机变量是¯X1−¯X2。 正态分布采用以下格式: The standard deviation is: \[\sqrt{\frac...尽管这种情况不太可能(知道总体标准差的可能性很小),但以下示例说明了对具有已知总体标准差的独立均值的假设检验。 根据中心极限定理,均值之间差值的抽样分布是正态的。 随机变量是¯X1−¯X2。 正态分布采用以下格式: The standard deviation is: √(σ1)2n1+(σ2)2n2 The test statistic (z-score) is: \[Z_{c}=\frac{\left(\overline{x}_{1}-\overline{x}_{2}\right)-\delta_{0}}{\sqrt{\frac{\left(\sigma_{1}\right)^{2}}{n_{1}}+\frac{\left(\sigma_{2}\right)^{2…
- https://query.libretexts.org/Idioma_Portugues/Livro%3A_Estatisticas_de_negocios_(OpenStax)/10%3A_Teste_de_hip%C3%B3teses_com_duas_amostras/10.05%3A_Duas_m%C3%A9dias_populacionais_com_desvios_padr%C3%A3o_conhecidosA distribuição normal tem o seguinte formato: The standard deviation is: √(σ1)2n1+(σ2)2n2 \...A distribuição normal tem o seguinte formato: The standard deviation is: √(σ1)2n1+(σ2)2n2 The test statistic (z-score) is: Zc=(¯x1−¯x2)−δ0√(σ1)2n1+(σ2)2n2 No nível de significância de 5%, a partir dos dados da amostra, não h…
- https://query.libretexts.org/%D8%A7%D9%84%D9%84%D8%BA%D8%A9_%D8%A7%D9%84%D8%B9%D8%B1%D8%A8%D9%8A%D8%A9/%D9%83%D8%AA%D8%A7%D8%A8%3A_%D8%A5%D8%AD%D8%B5%D8%A7%D8%A1%D8%A7%D8%AA_%D8%A7%D9%84%D8%A3%D8%B9%D9%85%D8%A7%D9%84_(OpenStax)/10%3A/10.05%3A_%D9%88%D8%B3%D9%8A%D9%84%D8%AA%D8%A7%D9%86_%D8%B3%D9%83%D8%A7%D9%86%D9%8A%D8%AA%D8%A7%D9%86_%D9%84%D9%87%D9%85%D8%A7_%D8%A7%D9%86%D8%AD%D8%B1%D8%A7%D9%81%D8%A7%D8%AA_%D9%85%D8%B9%D9%8A%D8%A7%D8%B1%D9%8A%D8%A9_%D9%85%D8%B9%D8%B1%D9%88%D9%81%D8%A9يحتوي التوزيع العادي على التنسيق التالي: The standard deviation is: √(σ1)2n1+(σ2)2n2 \[\tex...يحتوي التوزيع العادي على التنسيق التالي: The standard deviation is: √(σ1)2n1+(σ2)2n2 The test statistic (z-score) is: Zc=(¯x1−¯x2)−δ0√(σ1)2n1+(σ2)2n2 على مستوى الأهمية البالغ 5٪، من بيانات العينة، لا توجد أدلة كافية لاستنتاج…
- https://query.libretexts.org/Kiswahili/Kitabu%3A_Takwimu_za_Biashara_(OpenStax)/10%3A_Kupima_hypothesis_na_Sampuli_mbili/10.05%3A_Njia_mbili_za_Idadi_ya_Watu_na_Mapungufu_ya_Kiwango_cha_KujulikanaUsambazaji wa kawaida una muundo wafuatayo: The standard deviation is: √(σ1)2n1+(σ2)2n2 \[\...Usambazaji wa kawaida una muundo wafuatayo: The standard deviation is: √(σ1)2n1+(σ2)2n2 The test statistic (z-score) is: Zc=(¯x1−¯x2)−δ0√(σ1)2n1+(σ2)2n2 Katika kiwango cha 5% cha umuhimu, kutoka kwa data ya sampuli, hakuna u…