Search
- Filter Results
- Location
- Classification
- Include attachments
- https://query.libretexts.org/%E7%AE%80%E4%BD%93%E4%B8%AD%E6%96%87/%E5%9B%BE%E4%B9%A6%EF%BC%9A%E5%9F%BA%E6%9C%AC%E4%BB%A3%E6%95%B0_(OpenStax)/01%3A_%E5%9F%BA%E9%87%91%E4%BC%9A/1.07%3A_1.7%EF%BC%9A%E5%8A%A0%E5%87%8F%E5%88%86%E6%95%B0/1.7E%3A_1.7E%EF%BC%9A%E7%BB%83%E4%B9%A0\(\dfrac{ 6}{13}+\left(- \dfrac{ 10}{13}\right)+\left(- \dfrac{ 12}{13}\right)\) \(\dfrac{ 5}{12}+\left(- \dfrac{ 7}{12}\right)+\left(- \dfrac{ 11}{12}\right)\) \(\frac{\left(\frac{3}{5}\right)^{2}}{\...\(\dfrac{ 6}{13}+\left(- \dfrac{ 10}{13}\right)+\left(- \dfrac{ 12}{13}\right)\) \(\dfrac{ 5}{12}+\left(- \dfrac{ 7}{12}\right)+\left(- \dfrac{ 11}{12}\right)\) \(\frac{\left(\frac{3}{5}\right)^{2}}{\left(\frac{3}{7}\right)^{2}}\) \(\frac{\left(\frac{3}{4}\right)^{2}}{\left(\frac{5}{8}\right)^{2}}\) \(\left(\frac{5}{9}+\frac{1}{6}\right) \div\left(\frac{2}{3}-\frac{1}{2}\right)\) \(\left(\frac{3}{4}+\frac{1}{6}\right) \div\left(\frac{5}{8}-\frac{1}{3}\right)\)
- https://query.libretexts.org/%D7%A2%D7%91%D7%A8%D7%99%D7%AA/%D7%90%D7%9C%D7%92%D7%91%D7%A8%D7%94_%D7%99%D7%A1%D7%95%D7%93%D7%99%D7%AA_1e_(OpenStax)/01%3A_%D7%99%D7%A1%D7%95%D7%93%D7%95%D7%AA/1.07%3A_%D7%94%D7%95%D7%A1%D7%A3_%D7%95%D7%97%D7%A1%D7%A8_%D7%A9%D7%91%D7%A8%D7%99%D7%9D/1.7E%3A_%D7%AA%D7%A8%D7%92%D7%99%D7%9C%D7%99%D7%9D\(\dfrac{ 6}{13}+\left(- \dfrac{ 10}{13}\right)+\left(- \dfrac{ 12}{13}\right)\) \(\dfrac{ 5}{12}+\left(- \dfrac{ 7}{12}\right)+\left(- \dfrac{ 11}{12}\right)\) \(\frac{\left(\frac{3}{5}\right)^{2}}{\...\(\dfrac{ 6}{13}+\left(- \dfrac{ 10}{13}\right)+\left(- \dfrac{ 12}{13}\right)\) \(\dfrac{ 5}{12}+\left(- \dfrac{ 7}{12}\right)+\left(- \dfrac{ 11}{12}\right)\) \(\frac{\left(\frac{3}{5}\right)^{2}}{\left(\frac{3}{7}\right)^{2}}\) \(\frac{\left(\frac{3}{4}\right)^{2}}{\left(\frac{5}{8}\right)^{2}}\) \(\left(\frac{5}{9}+\frac{1}{6}\right) \div\left(\frac{2}{3}-\frac{1}{2}\right)\) \(\left(\frac{3}{4}+\frac{1}{6}\right) \div\left(\frac{5}{8}-\frac{1}{3}\right)\)
- https://query.libretexts.org/Kiswahili/Kitabu%3A_Elementary_Algebra_(OpenStax)/01%3A_Misingi/1.07%3A_Ongeza_na_Ondoa_sehemu/1.7E%3A_Mazoezi\(\dfrac{ 6}{13}+\left(- \dfrac{ 10}{13}\right)+\left(- \dfrac{ 12}{13}\right)\) \(\dfrac{ 5}{12}+\left(- \dfrac{ 7}{12}\right)+\left(- \dfrac{ 11}{12}\right)\) \(\left(\frac{5}{9}+\frac{1}{6}\right) ...\(\dfrac{ 6}{13}+\left(- \dfrac{ 10}{13}\right)+\left(- \dfrac{ 12}{13}\right)\) \(\dfrac{ 5}{12}+\left(- \dfrac{ 7}{12}\right)+\left(- \dfrac{ 11}{12}\right)\) \(\left(\frac{5}{9}+\frac{1}{6}\right) \div\left(\frac{2}{3}-\frac{1}{2}\right)\) \(\left(\frac{3}{4}+\frac{1}{6}\right) \div\left(\frac{5}{8}-\frac{1}{3}\right)\) Vanessa ya kuoka ni kuoka biskuti za chokoleti na cooki Anahitaji\(\frac{1}{2}\) kikombe cha sukari kwa cookies chip chocolate na\(\frac{1}{4}\) sukari kwa cookies oatmeal.
- https://query.libretexts.org/Francais/Livre_%3A_Alg%C3%A8bre_%C3%A9l%C3%A9mentaire_(OpenStax)/01%3A_Fondations/1.07%3A_Ajouter_et_soustraire_des_fractions/1.7E%3A_Exercices\(\dfrac{ 6}{13}+\left(- \dfrac{ 10}{13}\right)+\left(- \dfrac{ 12}{13}\right)\) \(\dfrac{ 5}{12}+\left(- \dfrac{ 7}{12}\right)+\left(- \dfrac{ 11}{12}\right)\) \(\left(\frac{3}{4}+\frac{1}{6}\right) ...\(\dfrac{ 6}{13}+\left(- \dfrac{ 10}{13}\right)+\left(- \dfrac{ 12}{13}\right)\) \(\dfrac{ 5}{12}+\left(- \dfrac{ 7}{12}\right)+\left(- \dfrac{ 11}{12}\right)\) \(\left(\frac{3}{4}+\frac{1}{6}\right) \div\left(\frac{5}{8}-\frac{1}{3}\right)\) Baking Vanessa prépare des biscuits aux pépites de chocolat et des biscuits à l'avoine Elle a besoin d'une\(\frac{1}{2}\) tasse de sucre pour les biscuits aux pépites\(\frac{1}{4}\) de chocolat et de sucre pour les biscuits à l'avoine.
- https://query.libretexts.org/%D8%A7%D9%84%D9%84%D8%BA%D8%A9_%D8%A7%D9%84%D8%B9%D8%B1%D8%A8%D9%8A%D8%A9/%D9%83%D8%AA%D8%A7%D8%A8%3A_%D8%A7%D9%84%D8%AC%D8%A8%D8%B1_%D8%A7%D9%84%D8%A7%D8%A8%D8%AA%D8%AF%D8%A7%D8%A6%D9%8A_(OpenStax)/01%3A/1.07%3A_%D8%AC%D9%85%D8%B9_%D8%A7%D9%84%D9%83%D8%B3%D9%88%D8%B1_%D9%88%D8%B7%D8%B1%D8%AD%D9%87%D8%A7/1.7E%3A_%D8%AA%D9%85%D8%A7%D8%B1%D9%8A%D9%86\(\dfrac{ 6}{13}+\left(- \dfrac{ 10}{13}\right)+\left(- \dfrac{ 12}{13}\right)\) \(\dfrac{ 5}{12}+\left(- \dfrac{ 7}{12}\right)+\left(- \dfrac{ 11}{12}\right)\) \(\frac{\left(\frac{3}{5}\right)^{2}}{\...\(\dfrac{ 6}{13}+\left(- \dfrac{ 10}{13}\right)+\left(- \dfrac{ 12}{13}\right)\) \(\dfrac{ 5}{12}+\left(- \dfrac{ 7}{12}\right)+\left(- \dfrac{ 11}{12}\right)\) \(\frac{\left(\frac{3}{5}\right)^{2}}{\left(\frac{3}{7}\right)^{2}}\) \(\frac{\left(\frac{3}{4}\right)^{2}}{\left(\frac{5}{8}\right)^{2}}\) \(\left(\frac{5}{9}+\frac{1}{6}\right) \div\left(\frac{2}{3}-\frac{1}{2}\right)\) \(\left(\frac{3}{4}+\frac{1}{6}\right) \div\left(\frac{5}{8}-\frac{1}{3}\right)\)
- https://query.libretexts.org/Idioma_Portugues/Livro%3A_Elementary_Algebra_(OpenStax)/01%3A_Funda%C3%A7%C3%B5es/1.07%3A_Adicionar_e_subtrair_fra%C3%A7%C3%B5es/1.7E%3A_Exerc%C3%ADcios\(\dfrac{ 6}{13}+\left(- \dfrac{ 10}{13}\right)+\left(- \dfrac{ 12}{13}\right)\) \(\dfrac{ 5}{12}+\left(- \dfrac{ 7}{12}\right)+\left(- \dfrac{ 11}{12}\right)\) \(\left(\frac{5}{9}+\frac{1}{6}\right) ...\(\dfrac{ 6}{13}+\left(- \dfrac{ 10}{13}\right)+\left(- \dfrac{ 12}{13}\right)\) \(\dfrac{ 5}{12}+\left(- \dfrac{ 7}{12}\right)+\left(- \dfrac{ 11}{12}\right)\) \(\left(\frac{5}{9}+\frac{1}{6}\right) \div\left(\frac{2}{3}-\frac{1}{2}\right)\) \(\left(\frac{3}{4}+\frac{1}{6}\right) \div\left(\frac{5}{8}-\frac{1}{3}\right)\) Ela precisa de uma\(\frac{1}{2}\) xícara de açúcar para os biscoitos de chocolate e\(\frac{1}{4}\) de açúcar para os biscoitos de aveia.