Search
- Filter Results
- Location
- Classification
- Include attachments
- https://query.libretexts.org/Kiswahili/Algebra_ya_kati_(OpenStax)/09%3A_Ulinganisho_wa_Quadratic_na_Kazi/905%3A_Tatua_Ulinganisho_wa_Quadratic_katika_Fomu_ya_Quadratic/9.5E%3A_Mazoezi\(x^{\frac{2}{3}}+9 x^{\frac{1}{3}}+8=0\) \(x^{\frac{2}{3}}-3 x^{\frac{1}{3}}=28\) \(x^{\frac{2}{3}}+4 x^{\frac{1}{3}}=12\) \(x^{\frac{2}{3}}-11 x^{\frac{1}{3}}+30=0\) \(6 x^{\frac{2}{3}}-x^{\frac{1}{...\(x^{\frac{2}{3}}+9 x^{\frac{1}{3}}+8=0\) \(x^{\frac{2}{3}}-3 x^{\frac{1}{3}}=28\) \(x^{\frac{2}{3}}+4 x^{\frac{1}{3}}=12\) \(x^{\frac{2}{3}}-11 x^{\frac{1}{3}}+30=0\) \(6 x^{\frac{2}{3}}-x^{\frac{1}{3}}=12\) \(3 x^{\frac{2}{3}}-10 x^{\frac{1}{3}}=8\) 1. \(x=\pm \sqrt{3}, x=\pm 2\) 3. \(x=\pm \sqrt{15}, x=\pm \sqrt{2} i\) 5. \(x=\pm 1, x=\frac{ \pm \sqrt{6}}{2}\) 7. \(x=\pm \sqrt{3}, x=\pm \frac{\sqrt{2}}{2}\) 15. \(x=\pm \frac{11}{2}, x=\pm \frac{\sqrt{22}}{2}\)
- https://query.libretexts.org/Idioma_Portugues/Algebra_intermediaria_(OpenStax)/09%3A_Equa%C3%A7%C3%B5es_e_fun%C3%A7%C3%B5es_quadr%C3%A1ticas/905%3A_Resolver_equa%C3%A7%C3%B5es_quadr%C3%A1ticas_na_forma_quadr%C3%A1tica/9.5E%3A_Exerc%C3%ADcios\(x^{\frac{2}{3}}+9 x^{\frac{1}{3}}+8=0\) \(x^{\frac{2}{3}}-3 x^{\frac{1}{3}}=28\) \(x^{\frac{2}{3}}+4 x^{\frac{1}{3}}=12\) \(x^{\frac{2}{3}}-11 x^{\frac{1}{3}}+30=0\) \(6 x^{\frac{2}{3}}-x^{\frac{1}{...\(x^{\frac{2}{3}}+9 x^{\frac{1}{3}}+8=0\) \(x^{\frac{2}{3}}-3 x^{\frac{1}{3}}=28\) \(x^{\frac{2}{3}}+4 x^{\frac{1}{3}}=12\) \(x^{\frac{2}{3}}-11 x^{\frac{1}{3}}+30=0\) \(6 x^{\frac{2}{3}}-x^{\frac{1}{3}}=12\) \(3 x^{\frac{2}{3}}-10 x^{\frac{1}{3}}=8\) 1. \(x=\pm \sqrt{3}, x=\pm 2\) 3. \(x=\pm \sqrt{15}, x=\pm \sqrt{2} i\) 5. \(x=\pm 1, x=\frac{ \pm \sqrt{6}}{2}\) 7. \(x=\pm \sqrt{3}, x=\pm \frac{\sqrt{2}}{2}\) 15. \(x=\pm \frac{11}{2}, x=\pm \frac{\sqrt{22}}{2}\)
- https://query.libretexts.org/%E7%AE%80%E4%BD%93%E4%B8%AD%E6%96%87/%E4%B8%AD%E7%BA%A7%E4%BB%A3%E6%95%B0_(OpenStax)/09%3A_%E4%BA%8C%E6%AC%A1%E6%96%B9%E7%A8%8B%E5%92%8C%E5%87%BD%E6%95%B0/905%3A_9.5%EF%BC%9A%E6%B1%82%E8%A7%A3%E4%BA%8C%E6%AC%A1%E5%BD%A2%E5%BC%8F%E7%9A%84%E4%BA%8C%E6%AC%A1%E6%96%B9%E7%A8%8B/9.5E%3A_9.5E%EF%BC%9A%E7%BB%83%E4%B9%A0\(x^{\frac{2}{3}}+9 x^{\frac{1}{3}}+8=0\) \(x^{\frac{2}{3}}-3 x^{\frac{1}{3}}=28\) \(x^{\frac{2}{3}}+4 x^{\frac{1}{3}}=12\) \(x^{\frac{2}{3}}-11 x^{\frac{1}{3}}+30=0\) \(6 x^{\frac{2}{3}}-x^{\frac{1}{...\(x^{\frac{2}{3}}+9 x^{\frac{1}{3}}+8=0\) \(x^{\frac{2}{3}}-3 x^{\frac{1}{3}}=28\) \(x^{\frac{2}{3}}+4 x^{\frac{1}{3}}=12\) \(x^{\frac{2}{3}}-11 x^{\frac{1}{3}}+30=0\) \(6 x^{\frac{2}{3}}-x^{\frac{1}{3}}=12\) \(3 x^{\frac{2}{3}}-10 x^{\frac{1}{3}}=8\) 1。 \(x=\pm \sqrt{3}, x=\pm 2\) 3。 \(x=\pm \sqrt{15}, x=\pm \sqrt{2} i\) 5。 \(x=\pm 1, x=\frac{ \pm \sqrt{6}}{2}\) 7。 \(x=\pm \sqrt{3}, x=\pm \frac{\sqrt{2}}{2}\) 15。 \(x=\pm \frac{11}{2}, x=\pm \frac{\sqrt{22}}{2}\)
- https://query.libretexts.org/%D8%A7%D9%84%D9%84%D8%BA%D8%A9_%D8%A7%D9%84%D8%B9%D8%B1%D8%A8%D9%8A%D8%A9/%D8%A7%D9%84%D8%AC%D8%A8%D8%B1_%D8%A7%D9%84%D9%85%D8%AA%D9%88%D8%B3%D8%B7_(OpenStax)/09%3A_%D8%A7%D9%84%D9%85%D8%B9%D8%A7%D8%AF%D9%84%D8%A7%D8%AA_%D8%A7%D9%84%D8%AA%D8%B1%D8%A8%D9%8A%D8%B9%D9%8A%D8%A9_%D9%88%D8%A7%D9%84%D8%AF%D9%88%D8%A7%D9%84/905%3A_%D8%AD%D9%84_%D8%A7%D9%84%D9%85%D8%B9%D8%A7%D8%AF%D9%84%D8%A7%D8%AA_%D8%A7%D9%84%D8%AA%D8%B1%D8%A8%D9%8A%D8%B9%D9%8A%D8%A9_%D9%81%D9%8A_%D8%A7%D9%84%D8%B5%D9%88%D8%B1%D8%A9_%D8%A7%D9%84%D8%AA%D8%B1%D8%A8%D9%8A%D8%B9%D9%8A%D8%A9/9.5E%3A_%D8%AA%D9%85%D8%A7%D8%B1%D9%8A%D9%86\(x^{\frac{2}{3}}+9 x^{\frac{1}{3}}+8=0\) \(x^{\frac{2}{3}}-3 x^{\frac{1}{3}}=28\) \(x^{\frac{2}{3}}+4 x^{\frac{1}{3}}=12\) \(x^{\frac{2}{3}}-11 x^{\frac{1}{3}}+30=0\) \(6 x^{\frac{2}{3}}-x^{\frac{1}{...\(x^{\frac{2}{3}}+9 x^{\frac{1}{3}}+8=0\) \(x^{\frac{2}{3}}-3 x^{\frac{1}{3}}=28\) \(x^{\frac{2}{3}}+4 x^{\frac{1}{3}}=12\) \(x^{\frac{2}{3}}-11 x^{\frac{1}{3}}+30=0\) \(6 x^{\frac{2}{3}}-x^{\frac{1}{3}}=12\) \(3 x^{\frac{2}{3}}-10 x^{\frac{1}{3}}=8\) 1. \(x=\pm \sqrt{3}, x=\pm 2\) 3. \(x=\pm \sqrt{15}, x=\pm \sqrt{2} i\) 5. \(x=\pm 1, x=\frac{ \pm \sqrt{6}}{2}\) 7. \(x=\pm \sqrt{3}, x=\pm \frac{\sqrt{2}}{2}\) 15. \(x=\pm \frac{11}{2}, x=\pm \frac{\sqrt{22}}{2}\)
- https://query.libretexts.org/Francais/Alg%C3%A8bre_interm%C3%A9diaire_(OpenStax)/09%3A_%C3%89quations_et_fonctions_quadratiques/905%3A_R%C3%A9soudre_des_%C3%A9quations_quadratiques_sous_forme_quadratique/9.5E%3A_Exercices\(x^{\frac{2}{3}}+9 x^{\frac{1}{3}}+8=0\) \(x^{\frac{2}{3}}-3 x^{\frac{1}{3}}=28\) \(x^{\frac{2}{3}}+4 x^{\frac{1}{3}}=12\) \(x^{\frac{2}{3}}-11 x^{\frac{1}{3}}+30=0\) \(6 x^{\frac{2}{3}}-x^{\frac{1}{...\(x^{\frac{2}{3}}+9 x^{\frac{1}{3}}+8=0\) \(x^{\frac{2}{3}}-3 x^{\frac{1}{3}}=28\) \(x^{\frac{2}{3}}+4 x^{\frac{1}{3}}=12\) \(x^{\frac{2}{3}}-11 x^{\frac{1}{3}}+30=0\) \(6 x^{\frac{2}{3}}-x^{\frac{1}{3}}=12\) \(3 x^{\frac{2}{3}}-10 x^{\frac{1}{3}}=8\) 1. \(x=\pm \sqrt{3}, x=\pm 2\) 3. \(x=\pm \sqrt{15}, x=\pm \sqrt{2} i\) 5. \(x=\pm 1, x=\frac{ \pm \sqrt{6}}{2}\) 7. \(x=\pm \sqrt{3}, x=\pm \frac{\sqrt{2}}{2}\) 15. \(x=\pm \frac{11}{2}, x=\pm \frac{\sqrt{22}}{2}\)