Pour étudier le calcul des fonctions à valeurs vectorielles, nous suivons une voie similaire à celle que nous avons empruntée pour étudier les fonctions à valeurs réelles. Nous définissons d'abord la ...Pour étudier le calcul des fonctions à valeurs vectorielles, nous suivons une voie similaire à celle que nous avons empruntée pour étudier les fonctions à valeurs réelles. Nous définissons d'abord la dérivée, puis nous examinons les applications de la dérivée, puis nous passons à la définition des intégrales. Cependant, nous trouverons de nouvelles idées intéressantes en cours de route en raison de la nature vectorielle de ces fonctions et des propriétés des courbes spatiales.
Ili kujifunza hesabu ya kazi za thamani ya vector, tunafuata njia sawa na ile tuliyochukua katika kusoma kazi halisi. Kwanza, tunafafanua derivative, kisha tunachunguza maombi ya derivative, kisha tun...Ili kujifunza hesabu ya kazi za thamani ya vector, tunafuata njia sawa na ile tuliyochukua katika kusoma kazi halisi. Kwanza, tunafafanua derivative, kisha tunachunguza maombi ya derivative, kisha tunaendelea kufafanua integrals. Hata hivyo, tutapata mawazo mapya ya kuvutia njiani kama matokeo ya asili ya vector ya kazi hizi na mali ya curves nafasi.
Para estudar o cálculo de funções com valores vetoriais, seguimos um caminho semelhante ao que seguimos ao estudar funções com valor real. Primeiro, definimos a derivada, depois examinamos as aplicaçõ...Para estudar o cálculo de funções com valores vetoriais, seguimos um caminho semelhante ao que seguimos ao estudar funções com valor real. Primeiro, definimos a derivada, depois examinamos as aplicações da derivada e, em seguida, passamos à definição de integrais. No entanto, encontraremos algumas novas ideias interessantes ao longo do caminho, como resultado da natureza vetorial dessas funções e das propriedades das curvas espaciais.