1.7: Maneno ya busara
- Page ID
- 180836
Katika sehemu hii wanafunzi:
- Kurahisisha maneno ya busara.
- Panua maneno ya busara.
- Gawanya maneno ya busara.
- Ongeza na uondoe maneno ya busara.
- Kurahisisha maneno mazuri ya busara.
Duka la keki lina gharama za kudumu za\($280\) kila wiki na gharama za kutofautiana za\($9\) kila sanduku la pastries. gharama duka kwa wiki katika suala la\(x\), idadi ya masanduku alifanya, ni\(280 +9x\). Tunaweza kugawanya gharama kwa wiki kwa idadi ya masanduku yaliyotolewa ili kuamua gharama kwa kila sanduku la pastries.
\[\dfrac{280+9x}{x} \nonumber \]
Angalia kwamba matokeo ni kujieleza polynomial kugawanywa na kujieleza pili polynomial. Katika sehemu hii, tutachunguza quotients ya maneno ya polynomial.
Kurahisisha Maneno ya busara
Quotient ya maneno mawili ya polynomial inaitwa kujieleza kwa busara. Tunaweza kutumia mali ya vipande kwa maneno ya busara, kama vile kurahisisha maneno kwa kufuta mambo ya kawaida kutoka kwa nambari na denominator. Ili kufanya hivyo, sisi kwanza tunahitaji kuzingatia namba zote na denominator. Hebu tuanze na kujieleza kwa busara kuonyeshwa.
\[\dfrac{x^2+8x+16}{x^2+11x+28} \nonumber \]
Tunaweza kuzingatia nambari na denominator ili kuandika tena maneno.
\[\dfrac{{(x+4)}^2}{(x+4)(x+7)} \nonumber \]
Kisha tunaweza kurahisisha maneno hayo kwa kufuta jambo la kawaida\((x+4)\).
\[\dfrac{x+4}{x+7} \nonumber \]
- Fanya namba na denominator.
- Futa mambo yoyote ya kawaida.
Kurahisisha\(\dfrac{x^2-9}{x^2+4x+3}\)
Suluhisho
\[\begin{align*} &\dfrac{(x+3)(x-3)}{(x+3)(x+1)} && \text{Factor the numerator and the denominator}\\ &\dfrac{x-3}{x+1} && \text{Cancel common factor } (x+3) \end{align*}\]
Uchambuzi
Tunaweza kufuta sababu ya kawaida kwa sababu kujieleza yoyote kugawanywa na yenyewe ni sawa na\(1\).
Je,\(x^2\) neno linaweza kufutwa katika mfano wa mwisho?
Hapana. Sababu ni usemi unaozidishwa na usemi mwingine. \(x^2\)Neno sio sababu ya nambari au denominator.
Kurahisisha\(\dfrac{x-6}{x^2-36}\)
- Jibu
-
\(\dfrac{1}{x+6}\)
Kuzidisha Maneno ya busara
Kuongezeka kwa maneno ya busara hufanya kazi sawa na kuzidisha kwa sehemu nyingine yoyote. Tunazidisha nambari za nambari ili kupata namba ya bidhaa, na kisha kuzidisha denominators ili kupata denominator ya bidhaa. Kabla ya kuzidisha, ni muhimu kuzingatia nambari na denominators kama tulivyofanya wakati wa kurahisisha maneno ya busara. Mara nyingi tunaweza kurahisisha bidhaa za maneno ya busara.
- Fanya namba na denominator.
- Panua nambari za nambari.
- Kuzidisha denominators.
- Kurahisisha.
Panua maneno ya busara na uonyeshe bidhaa kwa fomu rahisi:
\(\dfrac{(x+5)(x-1)}{3(x+6)}\times\dfrac{(2x-1)}{(x+5)}\)
Suluhisho
\[\begin{align*} &\dfrac{(x+5)(x-1)}{3(x+6)}\times\dfrac{(2x-1)}{(x+5)} && \text{Factor the numerator and denominator.}\\[4pt] &\dfrac{(x+5)(x-1)(2x-1)}{3(x+6)(x+5)} && \text{Multiply numerators and denominators}\\[4pt] &\dfrac{(x-1)(2x-1)}{3(x+6)} && \text{Cancel common factors to simplify} \end{align*}\]
Panua maneno ya busara na uonyeshe bidhaa kwa fomu rahisi:
\(\dfrac{x^2+11x+30}{x^2+5x+6}\times\dfrac{x^2+7x+12}{x^2+8x+16}\)
- Jibu
-
\(\dfrac{(x+5)(x+6)}{(x+2)(x+4)}\)
Kugawa Maneno ya busara
Idara ya maneno ya busara hufanya kazi sawa na mgawanyiko wa sehemu nyingine. Ili kugawanya kujieleza kwa busara na kujieleza mwingine wa busara, kuzidisha maneno ya kwanza kwa usawa wa pili. Kutumia mbinu hii, tunataka kuandika upya\(\dfrac{1}{x}÷\dfrac{x^2}{3}\) kama bidhaa\(\dfrac{1}{x}⋅\dfrac{3}{x^2}\). Mara baada ya kujieleza mgawanyiko umeandikwa upya kama kujieleza kuzidisha, tunaweza kuzidisha kama tulivyofanya kabla.
\[\dfrac{1}{x}⋅\dfrac{3}{x^2}=\dfrac{3}{x^3} \nonumber \]
- Andika upya kama maneno ya kwanza ya busara yameongezeka kwa usawa wa pili.
- Factor numerators na denominators.
- Panua nambari za nambari.
- Kuzidisha denominators.
- Kurahisisha.
Gawanya maneno ya busara na ueleze quotient kwa fomu rahisi:
\(\dfrac{2x^2+x-6}{x^2-1}÷\dfrac{x^2-4}{x^2+2x+1}\)
Suluhisho
\ [kuanza {align*} &\ dfrac {2x^2+x-6} {x ^ 2-1} ÷\ dfrac {x ^ 2-4} {x ^ 2+2x+1}\\ [4pt]
&\ dfrac {2x^2+x-6} {x ^ 2-1}\ nyakati\ dfrac {x ^ 2x+1} {x ^ 2-4} &\ maandishi {Andika upya kama tatizo kuzidisha}\\ [4pt]
&\ dfrac {(2x-3) (x+2)} {(x-1) (x+1)}\ mara\ DFRAC {(x+1)} {(x+1)} {(x-2) (x-2)} &\ Nakala {Factor kadiri na denominator.}\\ [6pt]
&\ dfrac {(2x-3) (x+2) (x+1)} {(x-1) (x-1) (x+1) (x-2)} &\ maandishi {Kuzidisha nambari na denominators}\\ [6pt]
&\ DFRAC {(2x-3)} (x+1)} {(x-1) (x-2)} &&\ maandishi {Futa mambo ya kawaida ili kurahisisha}\ mwisho {align*}\]
Gawanya maneno ya busara na ueleze quotient kwa fomu rahisi:
\[\dfrac{9x^2-16}{3x^2+17x-28}÷\dfrac{3x^2-2x-8}{x^2+5x-14} \nonumber \]
- Jibu
-
\(0\)
Kuongeza na Kutoa Maneno ya busara
Kuongeza na kuondoa maneno ya busara hufanya kazi kama kuongeza na kuondoa sehemu ndogo za namba. Ili kuongeza sehemu ndogo, tunahitaji kupata denominator ya kawaida. Hebu tuangalie mfano wa kuongeza sehemu.
\[\begin{align*} \dfrac{5}{24}+\dfrac{1}{40} &= \dfrac{25}{120}+\dfrac{3}{120}\\ &= \dfrac{28}{120}\\ &= \dfrac{7}{30} \end{align*}\]
Tunapaswa kuandika upya sehemu ili waweze kushiriki denominator ya kawaida kabla ya kuweza kuongeza. Lazima tufanye kitu kimoja wakati wa kuongeza au kuondoa maneno ya busara.
Denominator rahisi ya kawaida ya kutumia itakuwa denominator ya kawaida, au LCD. LCD ni nyingi ndogo zaidi ambazo denominators zina sawa. Ili kupata LCD ya maneno mawili ya busara, tunaelezea maneno na kuzidisha mambo yote tofauti. Kwa mfano, kama denominators factored walikuwa\((x+3)(x+4)\) na\((x+4)(x+5)\), basi LCD itakuwa\((x+3)(x+4)(x+5)\).
Mara baada ya kupata LCD, tunahitaji kuzidisha kila kujieleza kwa namna ya\(1\) kwamba itabadilika denominator kwa LCD. Tungependa haja ya kuzidisha kujieleza na denominator ya\((x+3)(x+4)\)\(\dfrac{x+5}{x+5}\) na kujieleza na denominator ya\((x+4)(x+5)\) by\(\dfrac{x+3}{x+3}\).
- Fanya namba na denominator.
- Pata LCD ya maneno.
- Kuzidisha maneno kwa fomu ya 1 ambayo inabadilisha denominators kwenye LCD.
- Ongeza au uondoe nambari za nambari.
- Kurahisisha.
Ongeza maneno ya busara:\[\dfrac{5}{x}+\dfrac{6}{y} \nonumber \]
Suluhisho
Kwanza, tunapaswa kupata LCD. Katika kesi hiyo, LCD itakuwa\(xy\). Sisi kisha kuzidisha kila kujieleza na fomu sahihi ya\(1\) kupata\(xy\) kama denominator kwa kila sehemu.
\[\begin{align*} &\dfrac{5}{x}\times\dfrac{y}{y}+\dfrac{6}{y}\times\dfrac{x}{x}\\ &\dfrac{5y}{xy}+\dfrac{6x}{xy} \end{align*}\]
Sasa kwa kuwa maneno yana denominator sawa, tunaongeza tu nambari ili kupata jumla.
\[\dfrac{6x+5y}{xy} \nonumber \]
Uchambuzi
Kuzidisha kwa\(\dfrac{y}{y}\) au\(\dfrac{x}{x}\) haina mabadiliko ya thamani ya kujieleza awali kwa sababu idadi yoyote kugawanywa na yenyewe ni\(1\), na kuzidisha kujieleza kwa\(1\) anatoa kujieleza awali.
Ondoa maneno ya busara:\[\dfrac{6}{x^2+4x+4}-\dfrac{2}{x^2-4}\]
Suluhisho
\ [kuanza {align*}
&\ dfrac {6} {(x+2)} ^2} -\ dfrac {2} {(x+2) (x-2)} &\ maandishi {Factor}\\
&\ dfrac {6} {(x+2)} ^2}\ mara\ dfrac {x-2} {x-2} -\ DFRAC {2} ({x+2) (x-2)}\ mara\ dfrac {x+2} {x+2} &\ maandishi {Kuzidisha kila sehemu ya kupata LCD kama denominator}\\
&\ DFRAC {6 (x- 2)}
Callstack:
at (Kiswahili/Ramani:_Chuo_cha_Algebra_(OpenStax)/01:_Mahitaji/1.07:_Maneno_ya_busara), /content/body/div[5]/div[3]/div/p[3]/span, line 1, column 6
\ mwisho {align*}\]
Je, tunapaswa kutumia LCD ili kuongeza au kuondoa maneno ya busara?
Hapana. Denominator yoyote ya kawaida itafanya kazi, lakini ni rahisi kutumia LCD.
Ondoa maneno ya busara:\(\dfrac{3}{x+5}-\dfrac{1}{x-3}\)
- Jibu
-
\(\dfrac{2(x-7)}{(x+5)(x-3)}\)
Kurahisisha Complex Maneno ya busara
Maneno mazuri ya busara ni kujieleza kwa busara ambayo ina maneno ya ziada ya busara katika namba, denominator, au wote wawili. Tunaweza kurahisisha maneno mazuri ya busara kwa kuandika upya namba na denominator kama maneno moja ya busara na kugawa. Maneno mazuri ya busara\(\dfrac{a}{\dfrac{1}{b}+c}\) yanaweza kuwa rahisi kwa kuandika upya namba kama sehemu\(\dfrac{a}{1}\) na kuchanganya maneno katika denominator kama\(\dfrac{1+bc}{b}\). Tunaweza kisha kuandika tena maneno kama tatizo la kuzidisha kwa kutumia usawa wa denominator. Tunapata\(\dfrac{a}{1}⋅\dfrac{b}{1+bc}\), ambayo ni sawa na\(\dfrac{ab}{1+bc}\).
- Kuchanganya maneno katika nambari katika kujieleza moja kwa busara kwa kuongeza au kuondoa.
- Kuchanganya maneno katika denominator katika kujieleza moja ya busara kwa kuongeza au kuondoa.
- Andika upya kama namba iliyogawanywa na denominator.
- Andika upya kama kuzidisha.
- Kuzidisha.
- Kurahisisha.
Kurahisisha:\(\dfrac{y+\dfrac{1}{x}}{\dfrac{x}{y}}\)
Suluhisho
Anza kwa kuchanganya maneno katika nambari katika kujieleza moja.
\[\begin{align*} &y\times\dfrac{x}{x}+\dfrac{1}{x}\qquad \text{Multiply by } \dfrac{x}{x} \text{ to get LCD as denominator}\\ &\dfrac{xy}{x}+\dfrac{1}{x}\\ &\dfrac{xy+1}{x}\qquad \text{Add numerators} \end{align*}\]
Sasa nambari ni kujieleza moja ya busara na denominator ni kujieleza moja ya busara.
\[\begin{align*} &\dfrac{\dfrac{xy+1}{x}}{\dfrac{x}{y}}\\ \text{We can rewrite this as division, and then multiplication.}\\ &\dfrac{xy+1}{x}÷\dfrac{x}{y}\\ &\dfrac{xy+1}{x}\times\dfrac{y}{x}\qquad \text{Rewrite as multiplication}\\ &\dfrac{y(xy+1)}{x^2}\qquad \text{Multiply} \end{align*}\]
Kurahisisha:\(\dfrac{\dfrac{x}{y}-\dfrac{y}{x}}{y}\)
- Jibu
-
\(\dfrac{x^2-y^2}{xy^2}\)
Je! Maneno mazuri ya busara yanaweza kuwa rahisi?
Ndiyo. Tunaweza daima kuandika tena kujieleza tata ya busara kama kujieleza rahisi ya busara.
Fikia rasilimali hizi za mtandaoni kwa maelekezo ya ziada na mazoezi na maneno ya busara.
1. Kurahisisha maneno ya busara
2. Panua na Gawanya Maneno ya busara
Dhana muhimu
- Maneno ya busara yanaweza kuwa rahisi kwa kufuta mambo ya kawaida katika nambari na denominator. Angalia Mfano.
- Tunaweza kuzidisha maneno ya busara kwa kuzidisha nambari na kuzidisha denominators. Angalia Mfano.
- Ili kugawanya maneno ya busara, kuzidisha kwa usawa wa maneno ya pili. Angalia Mfano.
- Kuongeza au kuondoa maneno ya busara inahitaji kutafuta denominator ya kawaida. Angalia Mfano na Mfano.
- Maneno mazuri ya busara yana sehemu ndogo katika namba au denominator. Maneno haya yanaweza kuwa rahisi. Angalia Mfano.