Skip to main content
Global

1.R: Kazi (Mapitio)

  • Page ID
    181169
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    1.1: Kazi na Uthibitishaji wa Kazi

    Kwa mazoezi 1-4, onyesha kama uhusiano ni kazi.

    1)\(\{(a,b),(c,d),(e,d)\}\)

    Jibu

    kazi

    2)\(\{(5,2),(6,1),(6,2),(4,8)\}\)

    3)\(y^2+4=x\),kwa\(x\) variable huru na\(y\) variable tegemezi

    Jibu

    si kazi

    4) Je, grafu katika Kielelezo chini ya kazi?

    CNX_Precalc_Figure_01_07_208.jpg

    Kwa mazoezi 5-6, tathmini kazi katika maadili yaliyoonyeshwa:\(f(-3); f(2); f(-a); -f(a); f(a+h)\)

    5)\(f(x)=-2x^2+3x\)

    Jibu

    \(f(-3)=-27; f(2)=-2;f(-a)=-2a^2-3a;-f(a)=2a^2-3a;f(a+h)=-2a^2+3a-4ah+3h-2h^2\)

    6)\(f(x)=2|3x-1|\)

    Kwa mazoezi 7-8, onyesha kama kazi ni moja kwa moja.

    7)\(f(x)=-3 x+5\)

    Jibu

    moja kwa moja

    8)\(f(x)=|x-3|\)

    Kwa mazoezi 9-11, tumia mtihani wa mstari wa wima ili uone kama uhusiano ambao grafu hutolewa ni kazi.

    9)

    CNX_Precalc_Figure_01_07_209.jpg

    Jibu

    kazi

    10)

    CNX_Precalc_Figure_01_07_210.jpg

    11)

    CNX_Precalc_Figure_01_07_211.jpg

    Jibu

    kazi

    Kwa mazoezi 12-13, graph kazi.

    12)\(f(x)=|x+1|\)

    13)\(f(x)=x^{2}-2\)

    Jibu

    CNX_Precalc_Figure_01_07_213.jpg

    Kwa mazoezi 14-17, tumia Kielelezo hapa chini ili takriban maadili.

    CNX_Precalc_Figure_01_07_215.jpg

    14)\(f(2)\)

    15)\(f(-2)\)

    Jibu

    \(2\)

    16) Ikiwa\(f(x)=-2\), basi tatua\(x\)

    17) Ikiwa\(f(x)=1\), basi tatua\(x\)

    Jibu

    \(x=-1.8\)au\(x=1.8\)

    Kwa mazoezi 18-19, tumia kazi\(h(t)=-16 t^{2}+80t\) ili kupata maadili.

    18)\(\dfrac{h(2)-h(1)}{2-1}\)

    19)\(\dfrac{h(a)-h(1)}{a-1}\)

    Jibu

    \(\dfrac{-64+80 a-16 a^{2}}{-1+a}=-16 a+64\)

    1.2: Domain na Range

    Kwa mazoezi 1-4, tafuta uwanja wa kila kazi, ukielezea majibu kwa kutumia notation ya muda.

    1)\(f(x)=\dfrac{2}{3 x+2}\)

    2)\(f(x)=\frac{x-3}{x^{2}-4 x-12}\)

    Jibu

    \((-\infty,-2) \cup(-2,6) \cup(6, \infty)\)

    3)

    4) Graph kazi hii piecewise:\(f(x)=\left\{\begin{array}{ll}{x+1} & {x<-2} \\ {-2 x-3} & {x \geq-2}\end{array}\right.\)

    Jibu

    CNX_Precalc_Figure_01_07_214.jpg

    1.3: Viwango vya Mabadiliko na Tabia ya Grafu

    Kwa mazoezi 1-3, pata kiwango cha wastani cha mabadiliko ya kazi kutoka\(x=1\) kwa\(x=2\)

    1)\(f(x)=4 x-3\)

    2)\(f(x)=10 x^{2}+x\)

    Jibu

    \(31\)

    3)\(f(x)=-\dfrac{2}{x^{2}}\)

    Kwa mazoezi 4-6, tumia grafu ili kuamua vipindi ambavyo kazi zinaongezeka, kupungua, au mara kwa mara.

    4)

    CNX_Precalc_Figure_01_07_216.jpg

    Jibu

    kuongezeka\((2, \infty)\); kupungua\((-\infty, 2)\)

    5)

    CNX_Precalc_Figure_01_07_217.jpg

    6)

    CNX_Precalc_Figure_01_07_218.jpg

    Jibu

    kuongezeka\((-3,1)\); mara kwa mara\((-\infty,-3) \cup(1, \infty)\)

    7) Kupata chini ya ndani ya kazi graphed katika Zoezi 4.

    8) Kupata extrema mitaa kwa ajili ya kazi graphed katika Zoezi 5.

    Jibu

    kiwango cha chini cha ndani\((-2,-3)\); upeo wa ndani\((1,3)\)

    9) Kwa grafu katika Kielelezo katika Zoezi 10, uwanja wa kazi ni\([-3,3]\). Mipangilio ni\([-10,10]\). Pata kiwango cha chini kabisa cha kazi kwa kipindi hiki.

    10) Pata upeo kamili wa kazi iliyowekwa kwenye Kielelezo hapa chini.

    CNX_Precalc_Figure_01_07_219.jpg

    Jibu

    \((-1.8,10)\)

    1.4: Muundo wa Kazi

    Kwa mazoezi 1-5, tafuta\((f \circ g)(x)\) na\((g \circ f)(x)\) kwa kila jozi ya kazi.

    1)\(f(x)=4-x, g(x)=-4x\)

    2)\(f(x)=3 x+2, g(x)=5-6x\)

    Jibu

    \((f \circ g)(x)=17-18 x ;(g \circ f)(x)=-7-18x\)

    3)\(f(x)=x^{2}+2 x, g(x)=5 x+1\)

    4)\(f(x)=\sqrt{x+2}, g(x)=\dfrac{1}{x}\)

    Jibu

    \((f \circ g)(x)=\sqrt{\dfrac{1}{x}+2} ;(g \circ f)(x)=\dfrac{1}{\sqrt{x+2}}\)

    5)\(f(x)=\dfrac{x+3}{2}, g(x)=\sqrt{1-x}\)

    Kwa mazoezi 6-9, tafuta\((f \circ g)\) na kikoa\((f \circ g)(x)\) kwa kila jozi ya kazi.

    6)\(f(x)=\frac{x+1}{x+4}, g(x)=\frac{1}{x}\)

    Jibu

    \((f \circ g)(x)=\dfrac{1+x}{1+4 x}, x \neq 0, x \neq-\dfrac{1}{4}\)

    7)\(f(x)=\dfrac{1}{x+3}, g(x)=\dfrac{1}{x-9}\)

    8)\(f(x)=\dfrac{1}{x}, g(x)=\sqrt{x}\)

    Jibu

    \((f \circ g)(x)=\frac{1}{\sqrt{x}}, x>0\)

    9)\(f(x)=\frac{1}{x^{2}-1}, g(x)=\sqrt{x+1}\)

    Kwa mazoezi 10-11, onyesha kila kazi\(H\) kama muundo wa kazi mbili\(f\) na\(g\) wapi\(H(x)=(f \circ g)(x)\)

    10)\(H(x)=\sqrt{\frac{2 x-1}{3 x+4}}\)

    Jibu

    sampuli:\(g(x)=\dfrac{2 x-1}{3 x+4}; f(x)=\sqrt{x}\)

    11)\(H(x)=\dfrac{1}{\left(3 x^{2}-4\right)^{-3}}\)

    1.5: Mabadiliko ya Kazi

    Kwa mazoezi 1-8, mchoro grafu ya kazi iliyotolewa.

    1)\(f(x)=(x-3)^{2}\)

    Jibu

    CNX_Precalc_Figure_01_07_220.jpg

    2)\(f(x)=(x+4)^{3}\)

    3)\(f(x)=\sqrt{x}+5\)

    Jibu

    CNX_Precalc_Figure_01_07_222.jpg

    4)\(f(x)=-x^{3}\)

    5)\(f(x)=\sqrt[3]{-x}\)

    Jibu

    CNX_Precalc_Figure_01_07_224.jpg

    6)\(f(x)=5 \sqrt{-x}-4\)

    7)\(f(x)=4[|x-2|-6]\)

    Jibu

    CNX_Precalc_Figure_01_07_226.jpg

    8)\(f(x)=-(x+2)^{2}-1\)

    Kwa mazoezi 9-10, mchoro grafu ya kazi\(g\) ikiwa grafu ya kazi\(f\) inavyoonekana kwenye Mchoro hapa chini.

    CNX_Precalc_Figure_01_07_247.jpg

    9)\(g(x)=f(x-1)\)

    Jibu

    CNX_Precalc_Figure_01_07_228.jpg

    10)\(g(x)=3 f(x)\)

    Kwa mazoezi 11-12, andika equation kwa kazi ya kawaida iliyowakilishwa na kila grafu hapa chini.

    11)

    CNX_Precalc_Figure_01_07_230.jpg

    Jibu

    \(f(x)=|x-3|\)

    12)

    CNX_Precalc_Figure_01_07_231.jpg

    Kwa mazoezi 13-15, onyesha kama kila kazi hapa chini ni hata, isiyo ya kawaida, au wala.

    13)\(f(x)=3 x^{4}\)

    Jibu

    hata

    14)\(g(x)=\sqrt{x}\)

    15)\(h(x)=\frac{1}{x}+3 x\)

    Jibu

    isiyo ya kawaida

    Kwa mazoezi 16-18, kuchambua grafu na kuamua kama kazi iliyopigwa ni hata, isiyo ya kawaida, au wala.

    16)

    CNX_Precalc_Figure_01_07_232.jpg

    17)

    CNX_Precalc_Figure_01_07_233.jpg

    Jibu

    hata

    18)

    CNX_Precalc_Figure_01_07_234.jpg

    1.6: Kazi kamili ya Thamani

    Kwa ajili ya mazoezi 1-3, kuandika equation kwa ajili ya mabadiliko ya\(f(x)=|x|\).

    1)

    CNX_Precalc_Figure_01_07_235.jpg

    Jibu

    \(f(x)=\dfrac{1}{2}|x+2|+1\)

    2)

    CNX_Precalc_Figure_01_07_236.jpg

    3)

    CNX_Precalc_Figure_01_07_237.jpg

    Jibu

    \(f(x)=-3|x-3|+3\)

    Kwa mazoezi 4-6, grafu ya thamani kamili ya kazi.

    4)\(f(x)=|x-5|\)

    5)\(f(x)=-|x-3|\)

    Jibu

    CNX_Precalc_Figure_01_07_239.jpg

    6)\(f(x)=|2 x-4|\)

    Kwa mazoezi 7-8, tatua usawa wa thamani kamili.

    7)\(|x+4|=18\)

    Jibu

    \(x=-22, x=14\)

    8)\(\left|\dfrac{1}{3} x+5\right|=\left|\dfrac{3}{4} x-2\right|\)

    Kwa mazoezi 9-10, tatua usawa na ueleze suluhisho kwa kutumia notation ya muda.

    9)\(|3 x-2|<7\)

    Jibu

    \(\left(-\dfrac{5}{3}, 3\right)\)

    10)\(\left|\dfrac{1}{3} x-2\right| \leq 7\)

    1.7: Kazi za Inverse

    Kwa mazoezi 1-2, tafuta\(f^{-1}(x)\) kwa kila kazi.

    1)\(f(x)=9+10 x\)

    2)\(f(x)=\dfrac{x}{x+2}\)

    Jibu

    \(f^{-1}(x)=\dfrac{-2 x}{x-1}\)

    3) Kwa zoezi zifuatazo, pata uwanja ambao kazi hiyo\(f\) ni moja kwa moja na isiyo ya kupungua. Andika kikoa katika maelezo ya muda. Kisha tafuta inverse ya\(f\) vikwazo kwenye uwanja huo. \[f(x)=x^{2}+1\]

    4) Kutokana\(f(x)=x^{3}-5\) na\(g(x)=\sqrt[3]{x+5} \):

    1. Kupata\(f(g(x))\) na\(g(f(x))\).
    2. Jibu linatuambia nini kuhusu uhusiano kati\(f(x)\) na\(g(x) ?\)
    Jibu
    1. \(f(g(x))=x\)na\(g(f(x))=x\)
    2. Hii inatuambia kwamba\(f\) na\(g\) ni kazi inverse

    Kwa mazoezi 5-8, tumia matumizi ya graphing ili kuamua kama kila kazi ni moja kwa moja.

    5)\(f(x)=\dfrac{1}{x}\)

    Jibu

    Kazi ni moja kwa moja.

    CNX_Precalc_Figure_01_07_248.jpg

    6)\(f(x)=-3 x^{2}+x\)

    Jibu

    Kazi sio moja kwa moja.

    CNX_Precalc_Figure_01_07_249.jpg

    7) Ikiwa\(f(5)=2,\) hupata\(f^{-1}(2)\)

    Jibu

    \(5\)

    8) Ikiwa\(f(1)=4,\) hupata\(f^{-1}(4)\)

    Mazoezi mtihani

    Kwa mazoezi 1-2, onyesha kama kila moja ya mahusiano yafuatayo ni kazi.

    1)\(y=2 x+8\)

    Jibu

    Uhusiano ni kazi.

    2)\(\{(2,1),(3,2),(-1,1),(0,-2)\}\)

    Kwa mazoezi 3-4, tathmini kazi\(f(x)=-3 x^{2}+2 x\) katika pembejeo iliyotolewa.

    3)\(f(-2)\)

    Jibu

    \(-16\)

    4)\(f(a)\)

    5) Onyesha kwamba kazi\(f(x)=-2(x-1)^{2}+3\) sio moja kwa moja.

    Jibu

    Grafu ni parabola na grafu inashindwa mtihani wa mstari usio na usawa.

    6) Andika kikoa cha kazi\(f(x)=\sqrt{3-x}\) katika maelezo ya muda.

    7) Kupewa\(f(x)=2 x^{2}-5 x,\) kupata\(f(a+1)-f(1)\)

    Jibu

    \(2 a^{2}-a\)

    8) Graph kazi\(f(x)=\left\{\begin{array}{ccc}{x+1} & {\text { if }} & {-2<x<3} \\ {-x} & {\text { if }} & {x \geq 3}\end{array}\right.\)

    9) Pata kiwango cha wastani cha mabadiliko ya kazi\(f(x)=3-2 x^{2}+x\) kwa kutafuta\(\dfrac{f(b)-f(a)}{b-a}\)

    Jibu

    \(-2(a+b)+1\)

    Kwa mazoezi 10-11, tumia kazi\(f(x)=3-2 x^{2}+x\) na\(g(x)=\sqrt{x}\) kupata kazi za composite.

    10)\((g \circ f)(x)\)

    11)\((g \circ f)(1)\)

    Jibu

    \(\sqrt{2}\)

    12)\(H(x)=\sqrt[3]{5 x^{2}-3 x}\) Eleza muundo wa kazi mbili,\(f\) na\(g,\) wapi\((f \circ g)(x)=H(x)\)

    Kwa mazoezi 13-14, graph kazi kwa kutafsiri, kunyoosha, na/au compressing kazi toolkit.

    13)\(f(x)=\sqrt{x+6}-1\)

    Jibu

    CNX_Precalc_Figure_01_07_242.jpg

    14)\(f(x)=\dfrac{1}{x+2}-1\)

    Kwa mazoezi 15-17, onyesha kama kazi ni hata, isiyo ya kawaida, au wala.

    15)\(f(x)=-\dfrac{5}{x^{2}}+9 x^{6}\)

    Jibu

    hata

    16)\(f(x)=-\dfrac{5}{x^{3}}+9 x^{5}\)

    17)\(f(x)=\dfrac{1}{x}\)

    Jibu

    isiyo ya kawaida

    18) Graph thamani kamili kazi\(f(x)=-2|x-1|+3\).

    19) Tatua\(|2 x-3|=17\).

    Jibu

    \(x=-7\)na\(x=10\)

    20) Tatua\(-\left|\dfrac{1}{3} x-3\right| \geq 17\). Eleza suluhisho katika maelezo ya muda.

    Kwa mazoezi 21-22, tafuta inverse ya kazi.

    21)\(f(x)=3 x-5\)

    Jibu

    \(f^{-1}(x)=\dfrac{x+5}{3}\)

    22)\(f(x)=\dfrac{4}{x+7}\)

    Kwa mazoezi 23-26, tumia grafu ya\(g\) inavyoonekana kwenye Kielelezo hapa chini.

    23) Je! Kazi inaongezeka kwa vipindi gani?

    Jibu

    \((-\infty,-1.1)\)na\((1.1, \infty)\)

    24) Kwa vipindi gani kazi inapungua?

    25) Takriban kiwango cha chini cha kazi. Eleza jibu kama jozi iliyoamriwa.

    Jibu

    \((1.1,-0.9)\)

    26) Takriban upeo wa ndani wa kazi. Eleza jibu kama jozi iliyoamriwa.

    Kwa mazoezi 27-29, tumia grafu ya kazi ya kipande kilichoonyeshwa kwenye Kielelezo hapa chini.

    27) Kupata\(f(2)\).

    Jibu

    \(f(2)=2\)

    28) Tafuta\(f(-2)\).

    29) Andika equation kwa kazi ya kipande.

    Jibu

    \(f(x)=\left\{\begin{array}{cl}{|x|} & {\text { if } x \leq 2} \\ {3} & {\text { if } x>2}\end{array}\right.\)

    Kwa mazoezi 30-35, tumia maadili yaliyoorodheshwa katika Jedwali hapa chini.

    \(x\) \(F(x)\)
    0 1
    1 3
    2 5
    3 7
    4 9
    5 11
    6 13
    7 15
    8 17

    30) Kupata\(F(6)\).

    31) Tatua equation\(F(x)=5\)

    Jibu

    \(x=2\)

    32) Je, grafu inaongezeka au kupungua kwenye uwanja wake?

    33) Je! Kazi inawakilishwa na grafu moja kwa moja?

    Jibu

    ndiyo

    34) Tafuta\(F^{-1}(15)\).

    35) Kupewa\(f(x)=-2 x+11,\) kupata\(f^{-1}(x)\).

    Jibu

    \(f^{-1}(x)=-\dfrac{x-11}{2}\)

    Wachangiaji na Majina