Skip to main content
Global

7.5: Sura ya Mapitio ya Mfumo

  • Page ID
    179855
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    7.1 Theorem ya Kati ya Kikomo kwa Njia za Mfano

    Theorem ya Kati ya Kikomo kwa Njia za Mfano:

    \(\overline{X} \sim N\left(\mu_{\overline{x}}, \frac{\sigma}{\sqrt{n}}\right)\)

    \(Z=\frac{\overline{X}-\mu_{\overline{X}}}{\sigma_{X}}=\frac{\overline{X}-\mu}{\sigma / \sqrt{n}}\)

    Maana\(\overline{X} : \mu_{\overline x}\)

    Theorem ya Kikomo ya Kati kwa Njia za Mfano z-alama\(z=\frac{\overline{x}-\mu_{\overline{x}}}{\left(\frac{\sigma}{\sqrt{n}}\right)}\)

    Hitilafu ya kawaida ya Maana (Kupotoka kwa kiwango\((\overline{X}) ) : \frac{\sigma}{\sqrt{n}}\)

    Kipengele cha Marekebisho ya Idadi ya Watu wa mwisho kwa ajili ya usambazaji wa sampuli ya njia:\(Z=\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}} \cdot \sqrt{\frac{N-n}{N-1}}}\)

    Finite Idadi ya Watu Marekebisho Factor kwa ajili ya usambazaji sampuli ya idadi:\(\sigma_{\mathrm{p}^{\prime}}=\sqrt{\frac{p(1-p)}{n}} \times \sqrt{\frac{N-n}{N-1}}\)