Skip to main content
Global

8.E: Kutatua usawa wa mstari (Mazoezi)

  • Page ID
    173340
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    8.1 - Tatua Equations kwa kutumia Ondoa na Kuongeza Mali ya Usawa

    Katika mazoezi yafuatayo, onyesha kama nambari iliyotolewa ni suluhisho la equation.

    1. x + 16 = 31, x = 15
    2. w - 8 = 5, w = 3
    3. -9n = 45, n = 54
    4. 4a = 72, a = 18

    Katika mazoezi yafuatayo, tatua equation kwa kutumia Mali ya Kuondoa ya Usawa.

    1. x + 7 = 19
    2. y + 2 = -6
    3. a +\(\dfrac{1}{3} = \dfrac{5}{3}\)
    4. n + 3.6 = 5.1

    Katika mazoezi yafuatayo, tatua equation kwa kutumia Mali ya Kuongeza ya Usawa.

    1. u - 7 = 10
    2. x - 9 = -4
    3. c -\(\dfrac{3}{11} = \dfrac{9}{11}\)
    4. p -4.8 = 14

    Katika mazoezi yafuatayo, tatua equation.

    1. n - 12 = 32
    2. y + 16 = -9
    3. f +\(\dfrac{2}{3}\) = 4
    4. d - 3.9 = 8.2
    5. y + 8 ÷ 15 = -3
    6. 7x + 10 - 6x + 3 = 5
    7. 6 (n - 1) - 5n = -14
    8. 8 (3p + 5) - 23 (p - 1) = 35

    Katika mazoezi yafuatayo, tafsiri kila sentensi ya Kiingereza kwenye equation ya algebraic na kisha kuitatua.

    1. Jumla ya -6 na m ni 25.
    2. Nne chini ya n ni 13.

    Katika mazoezi yafuatayo, tafsiri katika equation ya algebraic na kutatua.

    1. Binti wa Rochelle ni umri wa miaka 11. Mwanawe ni mdogo wa miaka 3. Mwanawe ni umri gani?
    2. Tan ina uzito paundi 146. Minh ina uzito wa paundi 15 zaidi ya Tan. Je, Minh hupima kiasi gani?
    3. Peter alilipa $9.75 kwenda kwenye sinema, ambayo ilikuwa chini ya $46.25 kuliko aliyolipa kwenda kwenye tamasha. Alilipa kiasi gani kwa ajili ya tamasha?
    4. Elissa chuma $152.84 wiki hii, ambayo ilikuwa $21.65 zaidi ya yeye chuma wiki iliyopita. Alipata kiasi gani wiki iliyopita?

    8.2 - Tatua Equations kwa kutumia Idara na Kuzidisha Mali ya Usawa

    Katika mazoezi yafuatayo, tatua kila equation kwa kutumia Mali ya Idara ya Usawa.

    1. 8x = 72
    2. 13a = -65
    3. 0.25p = 5.25
    4. -y = 4

    Katika mazoezi yafuatayo, tatua kila equation kwa kutumia Mali ya Kuzidisha ya Usawa.

    1. \(\dfrac{n}{6}\)= 18
    2. y -10 = 30
    3. 36 =\(\dfrac{3}{4}\) x
    4. \(\dfrac{5}{8} u = \dfrac{15}{16}\)

    Katika mazoezi yafuatayo, tatua kila equation.

    1. -18m = -72
    2. \(\dfrac{c}{9}\)= 36
    3. 0.45x = 6.75
    4. \(\dfrac{11}{12} = \dfrac{2}{3} y\)
    5. 5r - 3r + 9r = 35 ÷ 2
    6. 24x + 8x - 11x = -7,114

    8.3 - Tatua Ulinganisho na Vigezo na Vipindi vya Pande zote mbili

    Katika mazoezi yafuatayo, tatua equations na mara kwa mara pande zote mbili.

    1. 8p + 7 = 47
    2. 10w - 5 = 65
    3. 3x + 19 = -47
    4. 32 = -4 - 9n

    Katika mazoezi yafuatayo, tatua equations na vigezo pande zote mbili.

    1. 7y = 6y - 13
    2. 5a + 21 = 2a
    3. k = -6k - 35
    4. 4x -\(\dfrac{3}{8}\) = 3x

    Katika mazoezi yafuatayo, tatua equations na mara kwa mara na vigezo pande zote mbili.

    1. 12x - 9 = 3x + 45
    2. 5n - 20 = -7n - 80
    3. 4u + 16 = 19-19 - u
    4. \(\dfrac{5}{8} c\)- 4 =\(\dfrac{3}{8} c\) + 4

    Katika mazoezi yafuatayo, tatua kila equation linear kwa kutumia mkakati wa jumla.

    1. 6 (x + 6) = 24
    2. 9 (2p - 5) = 72
    3. - (s + 4) = 18
    4. 8 + 3 (n - 9) = 17
    5. 23 - 3 (y - 7) = 8
    6. \(\dfrac{1}{3}\)(6m + 21) = m - 7
    7. 8 (r - 2) = 6 (r + 10)
    8. 5 + 7 (2 - 5x) = 2 (9x + 1) - (13x - 57)
    9. 4 (3.5y + 0.25) = 365
    10. 0.25 (q - 8) = 0.1 (q + 7)

    8.4 - Tatua equations na Fraction au Coefficients Decimal

    Katika mazoezi yafuatayo, tatua kila equation kwa kufuta sehemu ndogo.

    1. \(\dfrac{2}{5} n − \dfrac{1}{10} = \dfrac{7}{10}\)
    2. \(\dfrac{1}{3} x + \dfrac{1}{5} x = 8\)
    3. \(\dfrac{3}{4} a − \dfrac{1}{3} = \dfrac{1}{2} a + \dfrac{5}{6}\)
    4. \(\dfrac{1}{2}\)(k + 3) =\(\dfrac{1}{3}\) (k + 16)

    Katika mazoezi yafuatayo, tatua kila equation kwa kufuta decimals.

    1. 0.8x - 0.3 = 0.7x + 0.2
    2. 0.36u + 2.55 = 0.41u + 6.8
    3. 0.6p - 1.9 = 0.78p + 1.7
    4. 0.10d + 0.05 (d - 4) = 2.05

    MTIHANI WA MAZOEZI

    1. Kuamua kama kila idadi ni suluhisho la equation. 3x + 5 = 23.
      1. 6
      2. \(\dfrac{23}{5}\)

    Katika mazoezi yafuatayo, tatua kila equation.

    1. n - 18 = 31
    2. 9c = 144
    3. 4y - 8 = 16
    4. -8x - 15 + 9x - 1 = -21
    5. -15a = 120
    6. \(\dfrac{2}{3}\)x = 6
    7. x + 3.8 = 8.2
    8. 10y = -5y + 60
    9. 8n + 2 = 6n + 12
    10. 9m - 2 - 4m + m = 42 ÷ 8
    11. -5 (2x 1) = 45
    12. - (d + 9) = 23
    13. \(\dfrac{1}{3}\)(6m + 21) = m - 7
    14. 2 (6x + 5) - 8 = -22
    15. 8 (3a + 5) - 7 (4a - 3) = 20 - 3a
    16. \(\dfrac{1}{4} p + \dfrac{1}{3} = \dfrac{1}{2}\)
    17. 0.1d + 0.25 (d + 8) = 4.1
    18. Tafsiri na kutatua: Tofauti ya mara mbili x na 4 ni 16.
    19. Samuel alilipa dola 25.82 kwa ajili ya gesi wiki hii, ambayo ilikuwa chini ya dola 3.47 kuliko alivyolipa wiki iliyopita. Alilipa kiasi gani wiki iliyopita?

    Wachangiaji na Majina