4.8: Kuongeza na Ondoa sehemu na Denominators tofauti (Sehemu ya 1)
- Page ID
- 173393
- Kupata denominator angalau kawaida (LCD)
- Badilisha FRACTIONS kwa FRACTIONS sawa na LCD
- Ongeza na uondoe sehemu ndogo na madhehebu tofauti
- Tambua na utumie shughuli za sehemu
- Tumia utaratibu wa shughuli ili kurahisisha sehemu ndogo
- Tathmini maneno ya kutofautiana na sehemu ndogo
Kabla ya kuanza, fanya jaribio hili la utayari.
- Kupata sehemu mbili sawa na\(\dfrac{5}{6}\). Kama amekosa tatizo hili, mapitio Mfano 4.1.14.
- Kurahisisha:\(\dfrac{1 + 5 \cdot 3}{2^{2} + 4}\). Kama amekosa tatizo hili, mapitio Mfano 4.3.13.
Pata Denominator ya kawaida
Katika sehemu iliyopita, tulielezea jinsi ya kuongeza na kuondoa sehemu ndogo na denominator ya kawaida. Lakini tunawezaje kuongeza na kuondoa sehemu ndogo na denominators tofauti?
Hebu fikiria kuhusu sarafu tena. Je, unaweza kuongeza robo moja na dime moja? Unaweza kusema kuna sarafu mbili, lakini hiyo si muhimu sana. Ili kupata thamani ya jumla ya robo moja pamoja na dime moja, unawabadilisha kwa aina moja ya kitengo cha senti. Robo moja ni sawa na\(25\) senti na dime moja ni sawa na\(10\) senti, hivyo jumla ni\(35\) senti. Angalia Kielelezo\(\PageIndex{1}\).
Kielelezo\(\PageIndex{1}\): Pamoja, robo na dime zina thamani ya senti 35, au\(\dfrac{35}{100}\) ya dola.
Vile vile, tunapoongeza sehemu ndogo na denominators tofauti tunapaswa kuzibadilisha kwa sehemu sawa na denominator ya kawaida. Pamoja na sarafu, wakati sisi kubadilisha kwa senti, denominator ni\(100\). Kwa kuwa kuna\(100\) senti katika dola moja,\(25\) senti ni\(\dfrac{25}{100}\) na\(10\) senti ni\(\dfrac{10}{100}\). Hivyo sisi kuongeza\(\dfrac{25}{100} + \dfrac{10}{100}\) kupata\(\dfrac{35}{100}\), ambayo ni\(35\) senti.
Umefanya mazoezi ya kuongeza na kuondoa sehemu ndogo na madhehebu ya kawaida. Sasa hebu tuone unachohitaji kufanya na sehemu ndogo ambazo zina denominators tofauti.
Kwanza, tutatumia tiles sehemu kwa mfano kutafuta denominator ya kawaida ya\(\dfrac{1}{2}\) na\(\dfrac{1}{3}\). Tutaanza na\(\dfrac{1}{2}\) tile moja na\(\dfrac{1}{3}\) tile. Tunataka kupata kawaida sehemu tile kwamba tunaweza kutumia kwa mechi zote mbili\(\dfrac{1}{2}\) na\(\dfrac{1}{3}\) hasa. Kama sisi kujaribu\(\dfrac{1}{4}\) vipande,\(2\) wao hasa mechi\(\dfrac{1}{2}\) kipande, lakini hawana hasa mechi\(\dfrac{1}{3}\) kipande.
Kielelezo\(\PageIndex{2}\)
Ikiwa tunajaribu\(\dfrac{1}{5}\) vipande, hazifunika\(\dfrac{1}{2}\) kipande au\(\dfrac{1}{3}\) kipande.
Kielelezo\(\PageIndex{3}\)
Kama tungekuwa kujaribu\(\dfrac{1}{12}\) vipande, wangeweza pia kazi.
Kielelezo\(\PageIndex{4}\)
Hata tiles ndogo, kama vile\(\dfrac{1}{24}\) na\(\dfrac{1}{48}\), ingekuwa pia hasa kufunika\(\dfrac{1}{2}\) kipande na\(\dfrac{1}{3}\) kipande. Denominator ya kipande kikubwa zaidi kinachofunika sehemu zote mbili ni denominator ya kawaida (LCD) ya sehemu mbili. Hivyo, angalau kawaida denominator ya\(\dfrac{1}{2}\) na\(\dfrac{1}{3}\) ni\(6\).
Kumbuka kwamba wote wa vigae kwamba kufunika\(\dfrac{1}{2}\) na\(\dfrac{1}{3}\) kuwa na kitu kwa pamoja: denominators yao ni mafungu ya kawaida ya\(2\) na\(3\), denominators ya\(\dfrac{1}{2}\) na\(\dfrac{1}{3}\). angalau ya kawaida nyingi (LCM) ya denominators ni\(6\), na hivyo tunasema kwamba\(6\) ni denominator angalau kawaida (LCD) ya sehemu ndogo\(\dfrac{1}{2}\) na\(\dfrac{1}{3}\).
Denominator ya kawaida (LCD) ya sehemu mbili ni ndogo zaidi ya kawaida (LCM) ya denominators yao.
Ili kupata LCD ya vipande viwili, tutapata LCM ya denominators yao. Tunafuata utaratibu tuliotumia mapema ili kupata LCM ya namba mbili. Tunatumia tu denominators ya sehemu ndogo, sio nambari, wakati wa kutafuta LCD.
Kupata LCD kwa FRACTIONS\(\dfrac{7}{12}\) na\(\dfrac{5}{18}\).
Suluhisho
Factor kila denominator katika primes yake. | ![]() |
Orodha ya primes ya 12 na primes ya 18 kuifunga yao katika nguzo iwezekanavyo. | ![]() |
Kuleta chini nguzo. | ![]() |
Kuzidisha mambo. Bidhaa ni LCM. | LCM = 36 |
LCM ya 12 na 18 ni 36, hivyo LCD ya\(\dfrac{7}{12}\) na\(\dfrac{5}{18}\) ni 36. | LCD ya\(\dfrac{7}{12}\) na\(\dfrac{5}{18}\) ni 36. |
Kupata denominator angalau kawaida kwa FRACTIONS:\(\dfrac{7}{12}\) na\(\dfrac{11}{15}\).
- Jibu
-
\(60\)
Kupata denominator angalau kawaida kwa FRACTIONS:\(\dfrac{13}{15}\) na\(\dfrac{17}{5}\).
- Jibu
-
\(15\)
Ili kupata LCD ya vipande viwili, pata LCM ya madhehebu yao. Angalia jinsi hatua zilizoonyeshwa hapa chini zinafanana na hatua tulizochukua ili kupata LCM.
Hatua ya 1. Factor kila denominator katika primes yake.
Hatua ya 2. Orodha primes, vinavyolingana primes katika nguzo wakati iwezekanavyo.
Hatua ya 3. Kuleta chini nguzo.
Hatua ya 4. Kuzidisha mambo. Bidhaa hiyo ni LCM ya denominators.
Hatua ya 5. LCM ya denominators ni LCD ya sehemu ndogo.
Kupata denominator angalau kawaida kwa FRACTIONS\(\dfrac{8}{15}\) na\(\dfrac{11}{24}\).
Suluhisho
Ili kupata LCD, tunapata LCM ya denominators. Kupata LCM ya\(15\) na\(24\).
LCM ya\(15\) na\(24\) ni\(120\). Hivyo, LCD ya\(\dfrac{8}{15}\) na\(\dfrac{11}{24}\) ni\(120\).
Kupata denominator angalau kawaida kwa FRACTIONS:\(\dfrac{13}{24}\) na\(\dfrac{17}{32}\).
- Jibu
-
\(96\)
Kupata denominator angalau kawaida kwa FRACTIONS:\(\dfrac{9}{28}\) na\(\dfrac{21}{32}\).
- Jibu
-
\(224\)
Badilisha FRACTIONS kwa FRACTIONS sawa na LCD
Mapema, tulitumia sehemu tiles kuona kwamba LCD ya\(\dfrac{1}{4}\) na\(\dfrac{1}{6}\) ni\(12\). Tuliona kwamba\(\dfrac{1}{12}\) vipande vitatu hasa kufunikwa\(\dfrac{1}{4}\) na\(\dfrac{1}{12}\) vipande viwili hasa kufunikwa\(\dfrac{1}{6}\), hivyo
\[\dfrac{1}{4} = \dfrac{3}{12} \quad and \quad \dfrac{1}{6} = \dfrac{2}{12} \ldotp \nonumber \]
Tunasema kwamba\(\dfrac{1}{4}\) na\(\dfrac{3}{12}\) ni sawa FRACTIONS na pia kwamba\(\dfrac{1}{6}\) na\(\dfrac{2}{12}\) ni sawa sehemu ndogo.
Tunaweza kutumia Mali sawa Fractions kwa algebraically kubadilisha sehemu kwa moja sawa. Kumbuka, sehemu mbili ni sawa ikiwa zina thamani sawa. Sawa Fractions Mali ni mara kwa mara chini kwa ajili ya kumbukumbu.
Ikiwa\(a, b, c\) ni namba nzima ambapo\(b ≠ 0\)\(c ≠ 0\), basi
\[\dfrac{a}{b} = \dfrac{a \cdot c}{b \cdot c} \quad and \quad \dfrac{a \cdot c}{b \cdot c} = \dfrac{a}{b}\]
Ili kuongeza au kuondoa sehemu ndogo na denominators tofauti, tutahitaji kwanza kubadili kila sehemu kwa sehemu sawa na LCD. Hebu tuone jinsi ya\(\dfrac{1}{6}\) kubadili\(\dfrac{1}{4}\) na sehemu sawa na denominator\(12\) bila kutumia mifano.
\(\dfrac{1}{4}\)\(\dfrac{1}{6}\)Kubadilisha na sehemu sawa na denominator\(12\), LCD yao.
Suluhisho
Kupata LCD. | LCD ya\(\dfrac{1}{4}\) na\(\dfrac{1}{6}\) ni 12. |
Kupata idadi ya kuzidisha 4 kupata 12. | \(4 \cdot \textcolor{red}{3} = 12\) |
Kupata idadi ya kuzidisha 6 kupata 12. | \(6 \cdot \textcolor{red}{2} = 12\) |
Tumia sehemu sawa za Mali ili kubadilisha kila sehemu kwa sehemu sawa na LCD, kuzidisha nambari zote na denominator ya kila sehemu kwa idadi sawa. | \(\begin{split} \dfrac{1}{4} \qquad & \dfrac{1}{6} \\ \dfrac{1 \cdot \textcolor{red}{3}}{4 \cdot \textcolor{red}{3}} \qquad & \dfrac{1 \cdot \textcolor{red}{2}}{6 \cdot \textcolor{red}{2}} \end{split}\) |
Kurahisisha nambari na denominators. | \(\dfrac{3}{12} \qquad \dfrac{2}{12}\) |
Hatuna kupunguza sehemu ndogo. Kama tulifanya, tunataka kupata nyuma sehemu yetu ya awali na kupoteza denominator ya kawaida.
Badilisha kwa FRACTIONS sawa na LCD:\(\dfrac{3}{4}\) na\(\dfrac{5}{6}\),\(LCD = 12\)
- Jibu
-
\(\dfrac{9}{12}, \dfrac{10}{12}\)
Badilisha kwa FRACTIONS sawa na LCD:\(- \dfrac{7}{12}\) na\(\dfrac{11}{15}\),\(LCD = 60\)
- Jibu
-
\(-\dfrac{35}{60}, \dfrac{44}{60}\)
Hatua ya 1. Kupata LCD.
Hatua ya 2. Kwa kila sehemu, tambua nambari inayohitajika kuzidisha denominator ili kupata LCD.
Hatua ya 3. Tumia Mali ya sehemu sawa ili kuzidisha nambari zote na denominator kwa nambari uliyopata katika Hatua ya 2.
Hatua ya 4. Kurahisisha nambari na denominator.
\(\dfrac{8}{15}\)\(\dfrac{11}{24}\)Kubadilisha na sehemu sawa na denominator\(120\), LCD yao.
Kupata idadi ambayo lazima kuzidisha 15 kupata 120. | \(15 \cdot \textcolor{red}{8} = 120\) |
Kupata idadi ambayo lazima kuzidisha 24 kupata 120. | \(24 \cdot \textcolor{red}{5} = 120\) |
Matumizi sawa FRACTIONS Mali. | \(\dfrac{8 \cdot \textcolor{red}{8}}{15 \cdot \textcolor{red}{8}} \qquad \dfrac{11 \cdot \textcolor{red}{5}}{24 \cdot \textcolor{red}{5}}\) |
Kurahisisha nambari na denominators. | \(\dfrac{64}{120} \qquad \dfrac{55}{120}\) |
Badilisha kwa FRACTIONS sawa na LCD:\(\dfrac{13}{24}\) na\(\dfrac{17}{32}\), LCD\(96\)
- Jibu
-
\(\dfrac{52}{96}, \dfrac{51}{96}\)
Badilisha kwa FRACTIONS sawa na LCD:\(\dfrac{9}{28}\) na\(\dfrac{27}{32}\), LCD\(224\)
- Jibu
-
\(\dfrac{72}{224}, \dfrac{189}{224}\)
Kuongeza na Ondoa Fractions na Denominators tofauti
Mara tu tumebadilisha sehemu mbili kwa fomu sawa na denominators ya kawaida, tunaweza kuongeza au kuziondoa kwa kuongeza au kuondoa nambari.
Hatua ya 1. Kupata LCD.
Hatua ya 2. Badilisha kila sehemu kwa fomu sawa na LCD kama denominator.
Hatua ya 3. Ongeza au uondoe sehemu ndogo.
Hatua ya 4. Andika matokeo kwa fomu rahisi.
Ongeza:\(\dfrac{1}{2} + \dfrac{1}{3}\).
Suluhisho
Kupata LCD ya 2, 3. | ![]() |
Badilisha katika sehemu ndogo sawa na LCD 6. | \(\dfrac{1 \cdot \textcolor{red}{3}}{2 \cdot \textcolor{red}{3}} + \dfrac{1 \cdot \textcolor{red}{2}}{3 \cdot \textcolor{red}{2}}\) |
Kurahisisha nambari na denominators. | \(\dfrac{3}{6} + \dfrac{2}{6}\) |
Ongeza. | \(\dfrac{5}{6}\) |
Kumbuka, daima angalia ili uone kama jibu linaweza kuwa rahisi. Tangu\(5\) na\(6\) hawana sababu za kawaida, sehemu\(\dfrac{5}{6}\) haiwezi kupunguzwa.
Ongeza:\(\dfrac{1}{4} + \dfrac{1}{3}\).
- Jibu
-
\(\dfrac{7}{12}\)
Ongeza:\(\dfrac{1}{2} + \dfrac{1}{5}\).
- Jibu
-
\(\dfrac{7}{10}\)
Ondoa:\(\dfrac{1}{2} - \left(- \dfrac{1}{4}\right)\).
Suluhisho
Kupata LCD ya 2 na 4. | ![]() |
Andika upya kama sehemu sawa kwa kutumia LCD 4. | \(\dfrac{1 \cdot \textcolor{red}{2}}{2 \cdot \textcolor{red}{2}} - \left(- \dfrac{1}{4}\right)\) |
Kurahisisha sehemu ya kwanza. | \(\dfrac{2}{4} - \left(- \dfrac{1}{4}\right)\) |
Ondoa. | \(\dfrac{2 - (-1)}{4}\) |
Kurahisisha. | \(\dfrac{3}{4}\) |
Moja ya sehemu ndogo tayari ilikuwa na denominator ya kawaida, kwa hiyo tulipaswa tu kubadili sehemu nyingine.
Ondoa:\(\dfrac{1}{2} - \left(- \dfrac{1}{8}\right)\).
- Jibu
-
\(\dfrac{5}{8}\)
Ondoa:\(\dfrac{1}{3} - \left(- \dfrac{1}{6}\right)\).
- Jibu
-
\(\dfrac{1}{2}\)
Ongeza:\(\dfrac{7}{12} + \dfrac{5}{18}\).
Suluhisho
Kupata LCD ya 12 na 18. | ![]() |
Andika upya kama sehemu ndogo sawa na LCD. | \(\dfrac{7 \cdot \textcolor{red}{3}}{12 \cdot \textcolor{red}{3}} + \dfrac{5 \cdot \textcolor{red}{2}}{18 \cdot \textcolor{red}{2}}\) |
Kurahisisha nambari na denominators. | \(\dfrac{21}{36} + \dfrac{10}{36}\) |
Ongeza. | \(\dfrac{31}{36}\) |
Kwa sababu\(31\) ni idadi mkuu, haina sababu sawa na\(36\). Jibu ni rahisi.
Ongeza:\(\dfrac{7}{12} + \dfrac{11}{15}\).
- Jibu
-
\(\dfrac{79}{60}\)
Ongeza:\(\dfrac{13}{15} + \dfrac{17}{20}\).
- Jibu
-
\(\dfrac{103}{60}\)
Wakati sisi kutumia sawa Fractions Mali, kuna njia ya haraka ya kupata idadi unahitaji kuzidisha na kupata LCD. Andika mambo ya denominators na LCD kama ulivyofanya ili kupata LCD. Sababu “kukosa” za kila denominator ni namba unayohitaji.
LCD,\(36\), ina\(2\) sababu za\(2\) na\(2\) sababu za\(3\). Kumi na mbili ina sababu mbili za\(2\), lakini moja tu ya\(3\) -hivyo ni 'kukosa' moja\(3\). Sisi kuzidisha nambari na denominator ya\(\dfrac{7}{12}\) na\(3\) kupata sehemu sawa na denominator\(36\). Kumi na nane ni kukosa sababu moja ya\(2\) - hivyo kuzidisha numerator\(\dfrac{5}{18}\) na\(2\) denominator na kupata sehemu sawa na denominator\(36\). Tutatumia njia hii tunapoondoa sehemu ndogo katika mfano unaofuata.
Ondoa:\(\dfrac{7}{15} − \dfrac{19}{24}\).
Suluhisho
Kupata LCD. 15 ni 'kukosa' mambo matatu ya 2 24 ni 'kukosa' sababu ya 5 |
![]() |
Andika upya kama sehemu ndogo sawa na LCD. | \(\dfrac{7 \cdot \textcolor{red}{8}}{15 \cdot \textcolor{red}{8}} - \dfrac{19 \cdot \textcolor{red}{5}}{24 \cdot \textcolor{red}{5}}\) |
Kurahisisha kila nambari na denominator. | \(\dfrac{56}{120} - \dfrac{95}{120}\) |
Ondoa. | \(- \dfrac{39}{120}\) |
Andika upya kuonyesha sababu ya kawaida ya 3. | \(- \dfrac{13 \cdot 3}{40 \cdot 3}\) |
Ondoa jambo la kawaida ili kurahisisha. | \(- \dfrac{13}{40}\) |
Ondoa:\(\dfrac{13}{24} − \dfrac{17}{32}\).
- Jibu
-
\(\dfrac{1}{96}\)
Ondoa:\(\dfrac{21}{32} − \dfrac{9}{28}\).
- Jibu
-
\(\dfrac{75}{224}\)
Ongeza:\(- \dfrac{11}{30} + \dfrac{23}{42}\).
Suluhisho
Kupata LCD. | ![]() |
Andika upya kama sehemu ndogo sawa na LCD. | \(- \dfrac{11 \cdot \textcolor{red}{7}}{30 \cdot \textcolor{red}{7}} + \dfrac{23 \cdot \textcolor{red}{5}}{42 \cdot \textcolor{red}{5}}\) |
Kurahisisha kila nambari na denominator. | \(- \dfrac{77}{210} + \dfrac{115}{210}\) |
Ongeza. | \(\dfrac{38}{210}\) |
Andika upya kuonyesha sababu ya kawaida ya 2. | \(\dfrac{19 \cdot 2}{105 \cdot 2}\) |
Ondoa jambo la kawaida ili kurahisisha. | \(\dfrac{19}{105}\) |
Ongeza:\(- \dfrac{13}{42} + \dfrac{17}{35}\).
- Jibu
-
\(\dfrac{37}{210}\)
Ongeza:\(- \dfrac{19}{24} + \dfrac{17}{32}\).
- Jibu
-
\(-\dfrac{25}{96}\)
Katika mfano unaofuata, moja ya sehemu ndogo ina variable katika nambari yake. Tunafuata hatua sawa na wakati nambari zote mbili ni namba.
Ongeza:\(\dfrac{3}{5} + \dfrac{x}{8}\).
Suluhisho
Sehemu ndogo zina madhehebu tofauti.
Kupata LCD. | ![]() |
Andika upya kama sehemu ndogo sawa na LCD. | \(\dfrac{3 \cdot \textcolor{red}{8}}{5 \cdot \textcolor{red}{8}} + \dfrac{x \cdot \textcolor{red}{5}}{8 \cdot \textcolor{red}{5}}\) |
Kurahisisha nambari na denominators. | \(\dfrac{24}{40} + \dfrac{5x}{40}\) |
Ongeza. | \(\dfrac{24 + 5x}{40}\) |
Hatuwezi kuongeza\(24\) na kwa\(5x\) kuwa si kama maneno, hivyo hatuwezi kurahisisha usemi wowote zaidi.
Ongeza:\(\dfrac{y}{6} + \dfrac{7}{9}\).
- Jibu
-
\(\dfrac{3y+14}{18}\)
Ongeza:\(\dfrac{x}{6} + \dfrac{7}{15}\).
- Jibu
-
\(\dfrac{5x+14}{30}\)